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The proposition by Cauchy, that every group, whose order is divisible by
a prime p contains an element of order p (Exerc. d'analyse et de phys. math.
vol.III, p.250 ), was generalized here by Herr Sylow, saying that a group, whose
order is divisible by ν-th power of a prime p, always contains a subgroup of order
pν (Math. Ann. vol.5 ). For the symmetric group, whose elements are all the
n! permutations of n symbols, this proposition has already been proven since
Cauchy by direct generation of subgroups, and from this lemma the validity
of his proposition for any �nite group is deduced. The case, that Herr Sylow
assumes as known in his deduction of Cauchy's proposition, has induced Herr
Netto to develop another proof for the Sylow proposition, in which he starts
directly from the Cauchy lemma (Math Ann. vol.13; Grunert's Archiv, vol.62 ).
However, the symmetric group, which in all of the these proofs will be brought
in, is absolutely foreign to the substance of the Sylow proposition, so I have
tried to �nd a new derivation, in which the Cauchy Lemma is not needed, and
this was successful with the help of the methods, which Herr Sylow (l.c. p.588 )
has used for the exploration of the composition of groups whose order is a power
of a prime.

The elements of every �nite group can considered as substitutions (this jour-
nal, vol.86, p.230 ). However, I do not want to base the following proof on this
notion. Let there be several elements, which have the following properties (cf.
Kronecker, Berl. Monatsber. 1870, p.882; Weber, Math. Ann. vol.20, p.302):

I Every two elements A and B set in the given order specify a unique
third which is designated AB.

II From every of both equations AC = BC or CA = CB it follows
that A = B.

∗The following paper (Crelle's J. reine angew. Math. 100 (1887), 179-181) is one of the �rst
to use the abstract formulation of a group (William C. Waterhouse, The early proofs of Sylow's
Theorem, Archive for History of Exact Sciences 21 (1979), no. 3, 279�290. H Wussing, The
Genesis of the Abstract Group Concept, Cambridge, MA., 1984.) In many ways, the paper is
similar to modern proofs of the theorem: it uses induction, quotient groups, the group center,
and the class equation, but remarkably it calls not one of them by name. Style: readers
unfamiliar with fraktur letters should note that in roman script: H = H and G = G. The now
uncommon style of mathematical communication found in this article has been retained in
the English translation, as much as it was possible. Corrections of any kind are very welcome:
ag362@cornell.edu.
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III To the operation through which A and B equates to AB, applies
an associative law: (AB)C = A(BC), but the commutative law
AB = BA is not required.

IV The number of elements is �nite.

From the three �rst conditions it follows that there can be no more than one
element E (the �chief element�), which satis�es the equation E2 = E, thus
constituting a group by itself. If there is also F = F 2 then because of I. (E2)F =
E(F 2) or because of III. EEF = EFF and consequently because of II. E = F .
If A is any element, then so is AE2 = AE and E2A = EA and therefore
AE = EA = A. It is easily found from IV that such a chief element truly exists.

Let now H be a group constructed from the given elements, which has order
h divisible by ν-th (or higher) power of the prime p. Then it should be shown
that H contains a subgroup, whose order is pν . To simplify the presentation I
will assume that it is true for groups whose order is less than h. Those elements
of H which, like for example, the chief element, commute with any element of
H, make a subgroup G, whose order g is a divisor of h. I now distinguish two
cases:

1. g is divisible by p. Let A,B,C . . . be the elements of G, any two of which
commute with each other (by the de�nition of this group). Let a, b, c, . . . be
their orders and α, β, γ, . . . integer variables which range from 0 to respectively
a− 1, b− 1, c− 1 . . . Then the expression AαBβCγ . . . makes each element of G
as often as it makes the chief element E. Hence the product abc . . . is divisible
by g as well as by p, and consequently must one of its factors be divisible by
p. If this factor is a, then Aa/p = P is an element of H di�erent from E whose
order is exactly p (cf. this journal vol.86, p.223 ). Consider now (cf. Kronecker,
l.c. p.884; Camille Jordan, Bull. de la soc. math de France, vol.I, p.46 ) two
elements of H as (relatively) equal, if they di�er from each other by just a
power of P , then conditions I-IV are satis�ed for this concept of equality as
well, because every power of P commutes with every element of H1, and the
relatively di�erent elements of H construct a group, whose order is h

p < h, and

consequently by the assumption contain a subgroup of order pν−1 . Let Q run
through the elements of this subgroup and let λ run through the values 0 to
p−1, then the pν elements PλQ di�er from each other completely, and comprise
a group of order pν contained in H.

2. g is not divisible by p. I call two elements A and B "similar" (in reference
to H) if there is an element H in H, that satis�es the equation H−1AH = B.
All elements which are completely similar (and here also pair-wise) construct a
class of similar elements. Each of the g elements A1, A2, . . . Ag of the group G
constructs for itself a class. If

A1, . . . Ag, B1, . . . Bm (1)

1If the elements of H would not commute with this constructed group from the power of
P , then condition I would not be satis�ed.
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is a complete system of dissimilar elements of H, then the elements which com-
mute with Bµ, an element of H, constitute a group Gµ, whose order is gµ < h.
Otherwise Bµ would belong to the group G. Let H run through the h elements
of the group H, and thus H−1BµH runs through all the elements of the class
represented by Bµ. Because gµ of these h elements equal Bµ, and thus every gµ

elements equal to each other. If here hµ is the number of distinct elements in
H which are similar to Bµ, then

gµhµ = h (2)

Because each element of H is similar to one and only one element of (1), we have
that:

h = g + h1 + . . . + hm (3)

Because h is divisible by p but g is not, then the numbers h1, . . . hm of this
equation cannot all be divisible by p. If is hµ not divisible by p, then by
equation (2) the order gµ of the group Gµ is divisible by pν . Since gµ < h holds,
Gµ as well as H contains a subgroup of order pν .

Zurich, March 1884.
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