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Mathematical research of terrorism has the potential to inform both scholars and policy-

makers. This thesis presents several projects in this emerging area: (1) an ordinary-

differential equations model of a terrorist organization focused on evaluating various

counter-terrorism measures and predicting the evolution of terrorist conflicts; (2) a

model of nuclear smuggling where the adversary is described as a Markov process on a

transportation network and algorithms for positioning sensor arrays on the network; (3) a

new formulation of nuclear smuggling that allows fast computation using approximation

algorithms with performance guarantees; (4) a model for constructing cascade-resilient

networks, with implications for analyzing the structure of terrorist networks, specifically

their susceptibility to betrayal.
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CHAPTER 1

INTRODUCTION

The application of mathematical methods to counter-terrorism is not typically found

in the sophomore applied math curriculum and certainly our undergraduate students

can find more benign applications of mathematics. However, this thesis argues that

terrorism is an area where mathematical methods can make an impact in a variety of

targets/research problems.

State of the Field Judging by the practitioners, mathematical terrorism is an area lying

at the clash of disciplines such as operations research, economics and machine learning

(in that order). To date much of the research and policy interest in mathematical models

has been as a tool for helping in intelligence gathering - using some sort of an algorithms

for finding the bad guys in a big pile of heterogeneous data. This is a vast problem. Un-

fortunately there are indications that little real progress has been made to develop such

tools (unless the terrorists commit credit card fraud, in which case terrorism reduces to a

known problem and machine learning can help.) The difficulty is not surprising because

(1) our adversaries are smart, (2) training data is in short supply (mercifully).

Slow progress did not stop people from trying. The earliest quantitative papers

specifically in terrorism have appeared in the 1980s as a consequence of a wave of

hijackings [11]. In recent years some of the most interesting findings has been in iden-

tifying regularities in terrorist attacks and levels of violence. Namely, it has been found

that casualties from terrorist events tend to scale as a power law with an exponent of

2.5. Moreover, conflicts across the globe and across regions appear to be converging

towards a single type of violence as measured by the distribution of casualties [7]. It

was also found that terrorist violence come in waves of period 13±1 years [3], but not

the waves proposed on qualitative grounds [4]. It is notable that these patterns have been
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entirely missed by the political science community and it remains to be seen whether

good models can be developed to account for such trends.

Philosophy Unlike perhaps fluid dynamics (or e.g. climate change), terrorism as a

whole is far too complex a phenomenon to be described by a general mathematical

model. The same is of course true of disciplines like biology where no single model

can describe the phenomena in all scales simulateneously (e.g. both DNA replication

and the evolution of ecosystems). Yet in both biology and terrorism there are niches

where models can help evolve a more powerful understanding. At the very least the

attempt to formulate a model helps raise questions that would not occur to botanists (or

counter-terrorism experts) who tend to be qualitatively-minded.

It is worth quoting Rapoport, who in his critique of Richardson’s model of war

observed that models help in ways not typically appreciated [5]:

Contrary to a prevalent meaning of “model” in many theoretical formula-

tions, the main function of a mathematical model is not an “explanatory”

one. A mathematical model is more characteristically a point of departure

rather than a point of arrival in the construction of a theory. In this way it is

akin to the null hypothesis, which, incidentally, also involves the construct

of a mathematical model. In most cases, null hypotheses are made so that

they can be refuted. As a by-product of the refutation of the null hypoth-

esis, biases are usually discovered which point to the direction of search

for “causes.” It is much the same with mathematical models. These models

are often deliberately made simple-minded with full knowledge that they do

not represent reality. Their chief value is that they lead to compelling con-

sequences. These consequences are then compared with observations. As
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often as not, the derived consequences do not agree with the observations.

But then the direction and magnitude of the departures may indicate the di-

rection of further search. Richardson fully realizes both the usefulness and

the limitations of mathematical models and repeatedly emphasizes both.

Rapoport’s ideal of mathematical modeling is not always followed in this thesis.

First, most of the models are based on qualitative notions rather than on comparison

with data. More serious still is the dangerous tendency found in all of the chapters

in this thesis to advance specific policy recommendations - these must be qualified for

obvious methodological reasons. For instance some of the models make precise claims

even though the models are founded on poorly-understood simplifications (at one point

the author claims to have a method for finding “at least 63% of the optimal solution”).

These defects are all signs of the immaturity of the field. As it would grow one ex-

pects to see new models becoming increasingly realistic and validated. They would also

begin receiving more attention from policy-makers and non-mathematicians. For an ex-

ample of this trend consider a recent econometric paper on the interaction between Im-

provised Explosive Devices (IED) and countermeasures in Iraq [6]. The authors showed

that the countermeasures are effective despite the paradoxical increase in both the num-

ber of casualties and attacks (reason: other targets became so hardened that IED attacks

became the “inferior good” that insurgencies started “buying” more.) That paper was

cited by the U.S. Department of Defense in its congressional testimony, helping con-

tinue billions of dollars of funding for Joint IED Defeat Organization ($13B by April

2008).

Overview of Contents The current thesis is a collection of papers, about half of which

have already passed peer review (Ch. 2,4) while others, some almost as mature, are
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just entering it (Ch. 3,5). The problems come from different areas of terrorism, and

the models involve very different methodologies, including ordinary differential equa-

tions, Markov processes on networks, approximation algorithms for discrete optimiza-

tion problems, as well as network analysis.

Chapter 2 This chapter was motivated by a basic problem in counter-terrorism [19]:

when fighting Al-Qaida, is the best strategy to attack the leadership of the group or

to attack its rank-and-file i.e. its foot soldiers? The former seem to be more valuable

targets, in some ways easier to stop, but is attacking them more effective in the long

term? How serious is the oft-suggested risk of “blowback” (counter-terrorism measures

helping the terrorists)? This problem is not unlike the problems found in biology where

sometimes the objective is to develop a strategy to control a species which might be

invading an ecosystem. Does it better to attack the reproducing adults or the larvae?

To address those issues Chapter 2 introduces a dynamic model of terrorist organi-

zations (the original model was published in a terrorism journal [8], and is to appear in

a collection about mathematical models in counter-terrorism [9] ). The model is a very

simplified compartmental model consisting of two coupled linear ordinary differential

equations (ODEs). For comparison, there are surprisingly few ODE-based models of

terrorism, and the existing ones look at different questions.

The original version of the model was non-linear and therefore hard to analyze (Steve

Strogatz suggested that the author linearize it.) Interestingly, the biggest problem with

non-linearities in this area is not analytical (we thankfully have numerical integration

to fall back to, unlike Gauss). Rather it is the number of possible non-linearities and

their dependence on specifics of the conflict. Whereas in the fight against Al-Qaida in

Western Europe it might be worthwhile to consider non-linearity due to resentment of
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counter-terrorism operations, in the fight against the same group in Iraq it is perhaps

more important to consider non-linearity due to self-catalytic recruitment of security

forces, and so forth - very different forces appear more important in different terrorist

groups. It is likely that the linear model captures a more general aspect of terrorism, in

ways that the extensions cannot. Also, the simplicity should hopefully make it an attrac-

tive target for extensions by enterprising undergraduate students in dynamical systems

(indeed the author has already received two e-mails about re-implementing it.)

Despite the radical oversimplification, the resulting model makes some interesting

predictions: theoretically it is possible to guarantee the demise of a terrorist group based

on certain derivative conditions that should be possible to check in real life. The model

shows that if the leadership is being reduced and the organization is weakened then it can

yet recover, but it cannot recover from a decline in foot soldiers and a weakening. This

is essentially due to the compartmental structure - the system has a delay in restoring

the leaders pool but no delay with recruiting foot soldiers. This finding is suggestive of

what happened in Al-Qaida in 2001, and surely contains some truth, but of course the

real situation is not quite so simple.

Chapter 3 A major terrorism threat comes from non-conventional weapons. Indeed

it has already happened at least twice beside the famous Anthrax attacks (Tokyo Sarin

gas attacks and the much lesser known salmonella poisonings in The Dalles, OR [22]).

Studies indicate that the threat is real:

1. there is considerable interest by Islamist terrorists in acquiring attack capabilities

(other violent groups are typically more interested in doing a good show, and large

casualty figures are seen as counterproductive),

2. a team of 12 technically-trained terrorists should be able to build a working gun-
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type uranium weapon as soon as they acquire enriched Uranium and

3. cost-benefit studies show that a single nuclear weapon attack prevented every 400

years is sufficient to justify astronomical expenditures in prevention.

Thus far considerable resources have been put towards (a) securing the borders and

(b) stopping nuclear smuggling from ex-soviet nuclear sites (whose precise locations are

apparently unknown even to the Russians). For (b) a network of detectors for radioactive

materials has been deployed in parts of the ex-Soviet Union. The mathematical prob-

lems arising from this effort are in operations research. Namely, where should those

detectors be placed subject to various constraints such as money? This set of problems

is known as “network interdiction”, and has research going back to the origins of opera-

tions research, namely, min-cut problems (notice though that in this problem edges have

costs rather than capacities).

The work in chapter 3 (also in chapter 4) was started as a summer internship in Los

Alamos National Lab with Aric Hagberg (Theoretical Division), Feng Pan and David

Izraelevitz (Risk Analysis and Decision Support Systems Division.) The project’s first

contribution is to develop a Markovian model of the nuclear smuggler (termed “evader”)

and to show how to compute the evader’s expected cost to reaching his smuggling ob-

jective. Based on this model it is possible to define a stochastic version of network

interdiction where the objective is to maximize the expected cost of reaching the target.

Stochasticity in those models is not from deliberate evasion, but rather represents the

evader’s inability to find the best path to follow, since his computation would be con-

founded by the difficulty of estimating risk on different paths, even if the least-time or

least-distance path was easy to find. This model significantly advances the field in which

the main model is of an omniscient minimizer who sees all the detectors and finds the

least-cost path around them (these are large oversimplifications). The new model has
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a parameter that adjusts the level of stochasticity from complete randomness to com-

plete determinism (in that latter limit it becomes the omniscient model.) The author’s

contribution has been to

1. develop a mechanistic explanation of the model,

2. develop a software implementation of the algorithms,

3. show that the omniscient model is bad because it not only leads to suboptimal

solutions, but paradoxically, it can also lead to solutions that make matters worse,

and

4. most importantly, to develop two solution heuristics that can find good solutions

even in very large problems.

Those heuristics select edges to be interdicted based on global information about the

transportation network (edge betweenness centrality) and information about evader mo-

tion (which edges are likely to be transited). They are shown to perform much better

than standard methods on both synthetic and real transportation networks.

Unfortunately, the problem of finding the optimal detector placement on the trans-

portation network cannot be approximated arbitrarily well in polynomial time. Indeed

the heuristics do not come with guaranteed performance and synthetic instances exist

where they both are arbitrarily bad. On the whole though, the stochastic model and the

heuristic represent a significant increase in the quality of the solutions one can find and

also a significant increase in modeling realism.

Chapter 4 The complexity of the evader problem in chapter 3 suggested to the au-

thor to try to solve a simpler version of the network interdiction problem, as follows

7



(originally published in [11]).1 Specifically, suppose detectors could be hidden so that

the evader is unable to determine their location on the transportation network. This is

not unrealistic: placing decoy detectors would make it hard to find the real ones. Also

in large transportation networks finding the shortest path (or specifically the least-risk

path) becomes very hard.

An evader satisfying this condition could be termed “unreactive”. Unlike with the

deterministic model discussed earlier, this evader is moving stochastically on the net-

work and hence, there is no guarantee that it would be possible to catch him despite

his unreactivity. However, the optimization problem itself becomes much easier (not

surprisingly.) The new objective function - the probability of capture as a function of

the detection set - is submodular in the detection set. This is due to the fact that there is

no synergy when detectors isolate the target and instead there is an interference between

different detectors: the sum of their gain alone ≥ their gain when working together.

Submodularity implies that a greedy algorithm finds solutions that are > 63% of the

optimal solution. The author has further improved performance using a “fast initial-

ization” technique that exploits unique properties of this problem. As a result it was

experimentally found that the computation time seems to be independent of the number

of edges in the network, and it becomes possible to solve network interdiction on very

large transportation networks (up to 30,000 nodes have been tried, but it should scale to

millions of nodes and is highly parallelizable.) It is possible that the fast initialization

technique could be exploited in other important submodular optimization problems.

Chapter 5 An interesting and hard problem in terrorism research is to understand the

network structure of terrorist groups. Since terrorist groups are often operating in a

1A professor of the author once quoted Polya as saying that if you see a problem that you cannot solve,
then try finding a simpler problem (which you might not be able to solve either.)
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hostile social and legal environment, it is paramount for their secret social network to be

able to resist captures or betrayals. A classic design of secret societies is based on cells

so that the capture of one node typically leads to only the capture of the other members

of the cell.

This problem motivates chapter 5, which describes an investigation into the optimal

structure of terrorist networks (originally appeared as [12] and now revised in response

to two peer reviews.) What can be the outcome of such an investigation, beyond sat-

isfying academic curiosity and helping Al-Qaida? Actually, terrorist networks are not

the only type of secret societies. Indeed, dissident groups and guerrillas such as those

who sprung in Nazi-occupied Europe are also organized in this way. More importantly,

cascading failures such as those found in terrorist networks are also found in a variety

of other problems (including computer virus infections, electric power networks, supply

chains and others too numerous to list).

This cascade risk motivates the search for mechanisms or topological properties that

would increase the networks’ cascade resilience. The chapter introduces a simple model

under which networks are optimized for resilience and also performance, and describes

the optimal networks under this model. The results are perhaps surprising and in partic-

ular, it was found that when the exogenous risk of cascades is low the optimal networks

are densely-connected, but they are also densely-connected when the risk of cascades is

very high (depending on the parameter values). Moreover, one of the practical insights

is that it was found that certain types of networks are not suitable to attempts to im-

prove cascade resilience, and it is better to spend resource to improve their performance

ignoring the risk of cascades.
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CHAPTER 2

UNDERSTANDING TERRORIST ORGANIZATIONS WITH A DYNAMIC

MODEL

Chapter Abstract Terrorist organizations change over time because of processes such

as recruitment and training as well as counter-terrorism (CT) measures, but the effects

of these processes are typically studied qualitatively and in separation from each other.

Seeking a more quantitative and integrated understanding, we constructed a simple dy-

namic model where equations describe how these processes change an organization’s

membership. Analysis of the model yields a number of intuitive as well as novel find-

ings. Most importantly it becomes possible to predict whether counter-terrorism mea-

sures would be sufficient to defeat the organization. Furthermore, we can prove in gen-

eral that an organization would collapse if its strength and its pool of foot soldiers de-

cline simultaneously. In contrast, a simultaneous decline in its strength and its pool of

leaders is often insufficient and short-termed. These results and other like them demon-

strate the great potential of dynamic models for informing terrorism scholarship and

counter-terrorism policy making.
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2.1 Introduction

Our goal is to study terrorist organizations using a dynamic model. Generally speaking,

in such a model a phenomenon is represented as a set of equations which describe it

in simplified terms. The equations represent how the phenomenon changes in time

or space, and cast our empirically-based knowledge in precise mathematical language.

Once the model is constructed, it can be studied using powerful mathematical techniques

to yield predictions, observations and insights that are difficult or impossible to collect

empirically [1, 2]. For example, a dynamic model could be constructed for the various

militant groups operating in Iraq and then used to predict their strength a year in the

future. Moreover, given the model, it would be possible to evaluate the efficacy of

various counter-insurgency policies.

Mathematical models can help fill a large methodological void in terrorism research:

the lack of model systems. Whereas biologists studying pathogens can do experiments

in vitro, there are no such model systems in terrorism research, except for mathemat-

ical models. In this sense, the method developed below provides an in vitro form of

terrorism, which can be investigated in ways not possible in its in vivo kind. Like all

model systems, mathematical models are imperfect because they rely on large simplifi-

cations of the underlying political phenomena, and one can rightfully ask whether their

predictions would be sufficiently accurate. Fortunately, complex phenomena in fields

like biology have been studied very successfully with this mathematical technique [2].

Therefore, even phenomena as complex as found in terrorism research may, in some

cases, be productively studied using mathematical models and indeed, previous models

have brought considerable insights1.

1E. g. dynamic models: [3, 4, 5, 6, 7, 8, 9], rational choice models: [10, 11, 12, 13], agent-based
models: [14, 15].
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In the rest of the paper we describe a simple model of a terrorist organization. The

model is new in its focus, methodology and audience: We focus on a single terrorist

organization and model its processes of recruitment, its internal dynamics as well as the

impact of counter-terrorism measures on it. As to methodology, with a few exceptions

[4, 6, 8, 9] and perhaps a few others the powerful mathematical technique of differen-

tial equations has not been applied in terrorism research. Finally, the paper is specif-

ically written to an audience of non-mathematicians: the main body of the paper uses

non-technical language to explain the terminology and to describe the equations and

assumptions used in the model, while the technical analysis is exposed in the appendix.

The model described below was built following two design principles. First, it was

desired to have a model of broad applicability across organizations and conflicts. Indeed,

the model is so general that it can be applied to insurgencies or even to some non-terrorist

organizations. As we shall see, despite this generality it makes non-trivial observations

and more importantly it specifies sufficient conditions for victory over the organization

(see subsection 2.4.2). Second, it was desired to build a simple model so as to facilitate

interpretation, analysis and further development. It was hoped that the model would

establish a methodological prototype that could be easily extended and modified to fit

specific cases.

The organization of the paper is as follows. Section 2 describes the model - its

variables, parameters and relations between them. Section 3 graphically illustrates the

model’s predictions about terrorist organizations. Sections 4 and 5 discuss the insights

gleaned from the model, and the implications to counter-terrorism policies. The con-

clusions are in Section 6. Finally, all of the technical arguments are gathered in the

appendix.
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2.2 A Mathematical Model

There are many ways of describing a terrorist organization, such as its ideology or polit-

ical platform, its operational patterns, or its methods of recruitment. Here we consider it

from the “human resources” point of view. Namely, we are interested in examining how

the numbers of “leaders” and “foot soldiers” in the organization change with time. The

former includes experienced managers, weapon experts, financiers and even politicians

and religious leaders who help the organization, while the latter are the more numer-

ous rank-and-file. These two quantities arguably give the most important information

about the strength of the organization. The precise characteristics of the two groups and

their relative sizes would depend on the organization under consideration. Nevertheless,

this distinction remains relevant even in the very decentralized organizations like the

post-Afghanistan al-Qaeda movement, because we can identify the “leaders” as the ex-

perienced terrorists, as compared to the new recruits (see discussions in [16, 17]). The

division between those two groups is also important in practice because decision mak-

ers often need to choose which of the groups to target [18, 19, Ch.5]: while the leaders

represent more valuable targets, they are also harder to reach. Later on in section 5 we

actually compare the policy alternatives.

Therefore, let us represent a terrorist organization as two time-varying quantities, L

and F , corresponding to the number of leaders and foot soldiers, respectively. Also, L

and F determine the overall “strength” S of the organization. Because leaders possess

valuable skills and experience, they contribute more to the strength than an equivalent

number of foot soldiers. Hence, strength S is taken to be a weighted sum of the two

variables, with more weight (m > 1) given to leaders:

S = mL+F
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We now identify a set of processes that are fundamental in changing the numbers

of leaders and foot soldiers. These processes constitute the mathematical model. While

some of them are self-evident, others could benefit from quantitative comparison with

data. The latter task is non-trivial given the scarcity of time-series data on membership

in terrorist organizations and hence we leave it out for future work.

The histories of al-Qaeda and other terrorist organizations e. g., [20, 21, 22] suggest

that the pool of terrorist leaders and experts grows primarily when foot soldiers acquire

battle experience or receive training (internally, or in terrorist-supporting states, [23]).

Consequently, the pool of leaders (L) is provisioned with new leaders at a rate propor-

tional to the number of foot soldiers (F). We call this process “promotion” and label the

parameter of proportionality p. This growth is opposed by internal personnel loss due

to demotivation, fatigue, desertion as well as in-fighting and splintering [24, Ch.6]. This

phenomenon is modeled as a loss of a fraction (d) of the pool of leaders per unit time.

An additional important influence on the organization are the counter-terrorism (CT)

measures targeted specifically at the leadership, including arrests, assassinations as well

as efforts to disrupt communications and to force the leaders into long-term inactivity.

Such measures could be modeled as the removal of a certain number (b) of people per

unit time from the pool of leaders. CT is modeled as a constant rate of removal rather

than as a quantity that depends on the size of the organization because the goal is to see

how a fixed resource allocation towards CT would impact the organization. Presumably,

the human resources and funds available to fight the given terrorist organization lead, on

average, to the capture or elimination of a fixed number of operatives. In sum, we as-

sume that on average, at every interval of time the pool of leaders is nourished through

promotion, and drained because of internal losses and CT (see appendix, equation (2.1).)

The dynamics of the pool of foot soldiers (F) are somewhat similar to the dynamics
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of leaders. Like in the case of leaders, some internal losses are expected. This is mod-

eled as the removal of a fraction (d) of the pool of operatives per unit time where for

simplicity the rate d is the same as the rate for leaders (the complex case is discussed

in subsection 2.5.2.) Much like in the case of leaders above, counter-terrorism mea-

sures are assumed to remove a fixed number (k) of foot soldiers per unit time. Finally

and most importantly, we need to consider how and why new recruits join a terrorist

organization. Arguably, in many organizations growth in the ranks is in proportion to

the strength of the organization, for multiple reasons: Strength determines the ability to

carry out successful operations, which increase interest in the organization and its mis-

sion. Moreover, strength gives the organization the manpower to publicize its attacks,

as well as to man and fund recruitment activities. By assuming that recruitment is pro-

portional to strength, we capture the often-seen cycle where successful attacks lead to

greater recruitment, which leads to greater strength and more attacks. Overall, the pool

of foot soldiers is nourished through recruitment, and drained because of internal losses

and CT (see appendix, equation (2.2))2,3.

The numerical values of all of the above parameters (p,d,b,r,m,k) are dependent on

the particular organization under consideration, and likely vary somewhat with time4.

Fortunately, it is possible to draw many general conclusions from the model without

knowing the parameter values, and we shall do so shortly. Finally, it should be noted that

2A minor assumption in our model is that once a foot soldier is promoted a new foot soldier is re-
cruited as a replacement. It is shown in the appendix that if in some organizations such recruitment is
not automatic, then the current model is still valid for these organizations as long as p < r. In any case
the drain due to promotion is marginal because foot soldiers are far more numerous than leaders even in
relatively “top heavy” organizations.

3This model is similar to structured population models in biology, where the foot soldiers are the
“larvae” and the leaders are the “adults”. However, an interesting difference is that whereas larvae growth
is a function of the adult population alone, in a terrorist organization the pool of foot soldiers contributes
to its own growth.

4The simplest approach to estimating them would be to estimate the number and leaders and foot
soldiers at some point in time, and then find the parameter values by doing least-squares fitting of the
model to the data on the terrorist attacks, where we consider the terrorist attacks to be a proxy of strength.
However, this approach has some limitations.
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counter-terrorism need not be restricted to the parameters b,k (removal of leaders and

foot soldiers, respectively), and measures such as public advocacy, attacks on terrorist

bases, disruption of communication and others can weaken the organization by reducing

its capabilities as expressed through the other parameters.

In the above description, we assumed that counter-terrorism measures are parameters

that can be changed without affecting recruitment. This is a significant simplification

because in practice it may be difficult to respond to terrorist attacks without engendering

a backlash that actually promotes recruitment e. g., [25, 26]. Nevertheless, the advan-

tages of this simplification outweigh the disadvantages: Firstly, it is clear that any model

that would consider such an effect would be much more complicated than the current

model and consequently much harder to analyze or use. Secondly, the current model can

be easily extended to incorporate such an effect if desired. Thirdly, the strength of this

effect is difficult to describe in general because it depends extensively on factors such as

the specific CT measures being used, the terrorist actions and the political environment.

Indeed, [9] who incorporated this effect, constructed their model based on observations

of a specific context within the current conflict in Iraq.

The model includes additional implicit assumptions. First, it assumes a state of

stable gradual change, such that the effect of one terrorist or counter-terrorism operation

is smoothed. This should be acceptable in all cases where the terrorist organization is not

very small and thus changes are not very stochastic. Second, the model assumes that an

organization’s growth is constrained only by the available manpower, and factors such

as money or weapons do not impose an independent constraint. Third, it is assumed that

the growth in foot soldiers is not constrained by the availability of potential recruits -

and it is probably true in the case of al-Qaeda because willing recruits are plentiful (for

the case of England, see [27]). We discuss this point further in subsection 2.4.3.
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2.3 Analysis of the Model

Having written down the governing equations, the task of studying a terrorist organiza-

tion is reduced to the standard problem of studying solutions to the equations. Because

the equations indicate rates of change in time, the solutions would be two functions, L(t)

and F(t), giving the number of leaders and foot soldiers, respectively, at each time. Let

us suppose that currently (time 0) the organization has a certain number of leaders and

foot soldiers, L0 and F0, respectively and is subject to certain CT measures, quantified

by b and k. We want to see whether the CT measures are adequate to defeat the organi-

zation. Mathematically, this corresponds to the question of whether at some future time

both L and F would reach zero. Intuitively, we expect that the organization would be

eliminated if it is incapable of recovering from the losses inflicted on it by CT. In turn,

this would depend on its current capabilities as well as the parameters p,d,r,m which

characterize the organization.

Mathematical analysis of the model (see the appendix) shows that most terrorist

organizations5 evolve in time like the organizations whose “orbits” are displayed in

Fig. 2.1(a,b). In Fig. 2.1(a) we plotted eight different organizations with different start-

ing conditions. Another perspective can be seen in Fig. 2.1(b) which graphically illus-

trates the dynamical equations via arrows: the direction of each arrow and its length

indicate how an organization at the tail of the arrow would be changing and it what

rate. By picking any starting location (L0,F0) and connecting the arrows, it is possible

to visually predict the evolution into the future. Another illustration is found in Fig. 2.2,

which shows how two example organizations change with time.

5That is, those with realistically low rates of desertion: d < 1
2 (r + r

√
1+ mp

r ). A higher rate of
desertion d always causes the organization to collapse and is not as interesting from a policy perspective
(see subsection 2.5.2 for a discussion of desertion).
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Figure 2.1: (a) Typical solution curves of the equations coded by ultimate fate:
thin blue for successfully neutralized organizations and thick red for
those remaining operational and growing. The parameters were set to
representative values, but as was said earlier, all realistic organizations
are qualitatively similar and resemble these. (b) “Vector field” of L and
F . At each value of L,F the direction and length of the arrow give the
rate of change in L and F .

In general, it is found that the dynamics of the organization is dependent upon the

position of the organization with respect to a threshold line, which can be termed the

“sink line”: an organization will be neutralized if and only if its capabilities are below

the sink line. In other words, the current CT measures are sufficient if and only if the

organization lies below that threshold (thick red line on Fig. 2.3). The threshold is

impassable: an organization above it will grow, and one below it is sure to collapse.

This threshold is also very sharp: two organizations may lie close to the line, but the

one above it would grow, while the one below it would shrink even if the differences in

initial capabilities are small. In addition to the sink line, the model also predicts that all

successful organizations would tend towards a particular trajectory. This “trend line” (a

dashed black line on Fig. 2.3) is discussed further in subsection 2.4.1.
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Figure 2.2: Evolution of strength, leaders and foot soldiers (S,L,F , respectively)
in two terrorist organizations as a function of time. In (a), due to CT,
F falls initially but eventually the organization recovers through pro-
motion. In (b), L and S fall initially but eventually the organization
recovers through recruitment. The vertical axis has been rescaled by
dividing each quantity by the maximum it attains during the time evo-
lution. This makes it possible to represent all three quantities on the
same plot. The units of time are unspecified since they do not affect
the analysis. Of course, in a more complex model it would be desir-
able to consider periodic events like election cycles or generational
changes.
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Figure 2.3: Plot of the sink (thick red) and trend lines (thin dashed black). The
two lines intersect at a “saddle point”.
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Figure 2.4: The effects of the parameters b and k on the dynamical system, (a)
and (b) respectively, as seen through the effect on the sink line. In
each case, as the CT measures are increased, the sink line moves up
confining below it additional terrorist organizations.

Suppose now that the model predicts that the given organization is expected to grow

further despite the current CT measures, and therefore increased CT measures would be

needed to defeat it. To see the effect of additional CT measures, we need to examine how

the dynamical system changes in response to increases in the values of the parameters,

in particular, the parameters b and k which express the CT measures directed at leaders

and foot soldiers, respectively (Fig. 2.4).

It is also possible to affect the fate of the organization by influencing the values of

other parameters affecting its evolution, such as recruitment and promotion (Fig. 2.5).

In general, to bring the terrorist organization under control it is necessary to change

the parameters individually or simultaneously so that the organization’s current state,

(L,F), is trapped under the sink line. An interesting finding in this domain is that both

b and k are equivalent in the sense that both shift the sink link up in parallel (Fig. 2.4).
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Figure 2.5: The effects of the parameters p (a), r (b) and d (c) on the dynamical
system as seen through the effect on the sink line. When p or r are
increased the organizations are able to grow faster, causing the sink
line to move down, making the existing CT measures no longer suf-
ficient to neutralize some terrorist organizations. In contrast, when d

is increased, the sink line moves up because the organization is forced
to replace more internal loses to survive.

2.4 Discussion

2.4.1 Nascent terrorist organizations

Recall that the sink line (Fig. 2.3) distinguishes two classes of terrorist organizations -

those destined to be neutralized and those that will continue growing indefinitely. Within

the latter group, another distinction is introduced by the trend line - a distinction with

significance to counter-terrorism efforts: organizations lying to the left of it have differ-

ent initial growth patterns compared to those lying to the right (Fig. 2.1). The former

start with a large base of foot soldiers and a relatively small core of leaders. In these

organizations, F may initially decline because of CT, but the emergence of competent

leaders would then start organizational growth (e. g. Fig. 2.2(a)). In contrast, the latter

type of organizations start with a large pool of leaders but comparatively few recruits.

CT could decimate their leadership, but they would develop a wide pool of foot soldiers,
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recover and grow (e. g. Fig. 2.2(b)). Thus, all successful terrorist organizations may be

classified as either “p-types” (to the left of the trend line) or “r-types” (to the right of the

trend line) in reference to the parameters p of promotion and r of recruitment. In p-type

organizations early growth occurs mainly through promotion of their foot soldiers to

leaders, while in the r-types mainly through recruitment of new foot soldiers.

This classification could be applied to many actual organizations. For example, pop-

ular insurgencies are clearly p-type, while al-Qaeda’s history since the late 1990s closely

follows the profile of an r-type: Al-Qaeda may be said to have evolved through three

stages: First, a core of followers moved with bin Laden to Afghanistan. They were

well-trained but the organization had few followers in the wider world (for a history

see [28]). Then the attacks and counter-attacks in the Fall of 2001 reduced the orga-

nization’s presence in Afghanistan leaving its operatives outside the country with few

leaders or skills. Finally the organization cultivated a wide international network of foot

soldiers but they were ill-trained as compared to their predecessors. This description

closely matches the profiles in Fig. 2.1 where r-type organizations start from a small

well-trained core, move toward a smaller ratio of leaders to foot soldiers and then grow

through recruitment.

As was noted, nascent organizations tend towards the trend line, regardless of how

they started (Fig. 2.1). The slope of this line is r+
√

r2+4rmp
2p , and this number is the long-

term ratio between the number of foot soldiers and the number of leaders. Notice that

this formula implies that ratio is dependent on just the parameters of growth - r,m, p - and

does not depend on either d or the CT measures k,b. This ratio is generally not found

in failing organizations, but is predicted to be ubiquitous in successful organizations.

It may be possible to estimate it by capturing a division of an organization and it can

help calculate the model’s parameters. However, it is important to note that L includes

23



not just commanding officers, but also any individuals with substantially superior skills

and experience. The existence of the ratio is a prediction of the model, and if the other

parameters are known, it could be compared to empirical findings.

2.4.2 Conditions for Victory

Recall, that the model indicates that all terrorist organizations belong to one of three

classes: r-types, p-types and organizations that will be defeated. Each class exhibits

characteristic changes in its leaders, foot soldiers and strength (L,F and S resp.) over

time. This makes it possible to determine whether any given organization belongs to the

third class, i. e., to predict whether it would be defeated.

One finding is that if a terrorist organization weakens, i. e. shows a decline in its

strength S, it does not follow that it would be defeated. Indeed, in some r-type orga-

nizations it is possible to observe a temporary weakening of the organization and yet

unless counter-terrorism (CT) measures are increased, the organization would recover

and grow out of control (see Fig. 2.2(b)). Even a decline in the leadership is not by itself

sufficient to guarantee victory. The underlying reason for this effect is out-of-control

growth in F , which would ultimately create a new generation of terrorist leaders. Simi-

larly, it is possible for an organization to experience a decline in its pool of foot soldiers

and yet recover. These cases indicate that it is easy during a CT campaign to incorrectly

perceive apparent progress in reducing the organization as a sign of imminent victory.

Fortunately, under the model it is possible to identify reliable conditions for victory

over the organization (see the appendix for the proof):

1. For a p-type organization, it is impossible to have a decline in strength S. If such
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a decline is made to happen, the organization would be defeated.

2. For an r-type organization, it is impossible to have a decline in foot soldiers F. If

such a decline is made to happen, the organization would be defeated.

Consequently:

A terrorist organization would collapse if counter-terrorism

measures produce both: (1) a decline in its strength S and (2)

a decline in its foot soldiers F.

In a notable contrast, declines in strength and the leaders are not sufficient in all cases

(see Fig. 2.2(b)). To apply the theorem to an organization of an unknown type, one

needs merely to estimate whether the organization’s pool of foot soldiers and strength

are declining. The latter could be found indirectly by looking at the quantity and quality

of terrorist operations. It is not necessary to know the model’s parameters or changes in

the pool of leaders - the latter could even be increasing. Furthermore, while it may take

some time to determine whether S and F are indeed declining, this time could be much

shorter compared to the lifetime of the organization. Therefore, the theorem suggests

the following two-step approach:

1. Estimate the scale of CT measures believed to be necessary to defeat the organi-

zation.

2. Measure the effect on S and F . If they both declined, then sustain the scale of

operations (i. e. do not reduce b, k); Otherwise an increase in CT measures would

be necessary.
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The theorem and findings above give sufficient conditions for victory but they do not

characterize the only possible victory scenario. For example, it is possible for an orga-

nization to see an increase in its pool of foot soldiers F yet ultimately collapse: these are

organizations that lie to the right of the trend line and just slightly under the sink line.

More generally, it should be remembered that to prove the theorem it was necessary to

use a simplified model of a terrorist organization, as described in section 2.2. Never-

theless, it is likely that some form of the theorem would remain valid in complicated

models because the model is built on fundamental forces that are likely to be retained in

these models.

2.4.3 Stable Equilibria

Recall that the model does not have a stable equilibrium (Fig. 2.3). Yet, in many practical

cases, terrorist organization seem to reach a stable equilibrium in terms of their structure

and capabilities. It is plausible that such stability is the result of a dynamic balance be-

tween the growing terrorist organization and increasing CT measures directed against it.

Indeed, rather than staying constant numbers like b,k, CT may actually grow when the

organization presents more of a threat6. Aside from CT, stability may be the result of

organizations reaching an external limit on their growth - a limit imposed by constraints

such as funding, training facilities or availability of recruits. The case of funding could

be modeled by assuming that the growth of the organization slows as the organization

approaches a maximum point, (Lmax,Fmax). Alternatively, it is quite possible and consis-

tent with the model that there would be a perception of stasis because the organization

is changing only slowly.

6It would be a straightforward task to modify the model to incorporate such a control-theoretic inter-
action, but the task is more properly the subject of a follow-up study.
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2.5 Counter-Terrorism Strategies

Recall that the general counter-terrorism (CT) strategy in this model is based on the

location of the sink line, which we want to place above the terrorist organization (in

Fig. 2.1). To implement this strategy, it is necessary first to calculate the model’s pa-

rameters for a given organization (p,r,m,d), and second, to determine the efficacy of

the current counter-terrorism measures (b,k). Then, it remains “just” to find the most

efficient way of changing those parameters so as to move the sink line into the desired

location. Let us now consider several strategic options.

2.5.1 Targeting the leaders

An important “counter terrorist dilemma” [19] is whom to target primarily - the leaders

or the foot soldiers. Foot soldiers are an inviting target: not only do they do the vital

grunt work of terrorism, they also form the pool of potential leaders, and thus their

elimination does quiet but important damage to the future of the organization. Moreover,

in subsection 2.4.1 we saw that while an organization can recover from a decline in both

its strength and leadership pool, it cannot recover from declines in both its strength and

its foot soldiers pool. That finding does not say that attacking leaders is unlikely to bring

victory - indeed, they form an important part of the organization’s overall strength, but

it does suggest that a sustained campaign against an organization is more likely to be

successful when it includes an offensive against its low-level personnel. Yet, it seems

that the neutralization of a terrorist leader would be more profitable since the leader is

more valuable to the organization than a foot soldier, and his or her loss would inevitably

result in command and control difficulties that may even disrupt terrorist attacks.
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When we use the model to address the problem quantitatively, we find that the op-

timal strategy is actually dependent upon the organization, that is to say the parameters

p,d,r,m (but not on b,k). For example, for the parameter values used in the figures

above, an increase in b gives a greater rise in the sink line than an equal increase in k.

Specifically, for those parameter values every two units of b are equivalent to about ten

units of k. In general, when m,r,d are high but p is low then attack on the leadership

is favored, while attack on the foot soldiers is best when p is high but m,r,d are low

- in agreement with intuition7. In the first parameter range, foot soldiers are recruited

so rapidly that attacking them is futile, while in the second set leaders are produced

quickly so the only strategy is to fight the foot soldiers to prevent them from becoming

leaders. In any case, policy prescriptions of this kind must be applied with considera-

tion of counter-terrorism capabilities and policy costs. Thus, while on paper a particular

strategy is better, the other strategy could be more feasible.

It is often argued that counter-terrorism policies have considerable side effects. For

instance, there is evidence that targeted assassinations of leaders have led terrorist or-

ganizations to escalate, in what has been called the “boomerang effect” [29, p.125].

Fortunately, the model suggests that the policy maker has useful substitutes, with pos-

sibly fewer policy side effects. As Fig. 2.5 shows, making recruitment (r) lower has an

effect similar to increasing k. Likewise, decreasing the rate of promotion to leadership

(p) can substitute for increasing b. This agrees with intuition: for example, in the case of

the foot soldiers, growth can be contained either actively through e. g. arrests or proac-

tively by slowing the recruitment of new operatives (through e. g. attacks on recruitment

facilities or advocacy).

7Mathematically to obtain this result we first compute the derivatives of the fixed point with respect to
both b and k, then project them to the orthogonal to the sink link and then use an optimization solver to
find the parameter values of the model which maximize (and minimize) the ratio between the lengths of
the projections.
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2.5.2 Encouraging desertion

Fatigue and attrition of personnel have been empirically found to be an important effect

in the evolution of terrorist organizations. In interviews with captured or retired terror-

ists, they often complained about the psychological stress of their past work, its moral

contradictions, and the isolation from relatives and friends [24, Ch.6]. This is part of

the reason why terrorist organizations cannot remain inactive (as in a cease fire) for very

long without experiencing irreplaceable loss of personnel due to loss of motivation, and

many organizations even resort to coercion against desertion. Therefore, encouraging

operatives to leave through advocacy or amnesties may be an effective counter-terrorism

strategy.

The model introduced here brings theoretical insight into this phenomenon. One

prediction of the model is that even if such desertion exceeds recruitment (i. e. d > r)

the organization would still sustain itself as long as it has a sufficiently large rate of

promotion (p) or leaders of sufficiently high caliber (m). However, if d is even greater,

namely, exceeds d = 1
2(r + r

√
1+ mp

r ), then the model predicts that the organization

would be destroyed regardless of starting conditions, or counter-terrorism efforts (b,k).

Organizations with lower d are, of course, also effected by desertion. Earlier, in

Fig. 2.5 we saw how increasing d raises up the sink line. To see the phenomenon in

more detail, we replaced d by two (not necessarily equal) parameters dL and dF for

the desertion of L and F , respectively. The two parameters change the slope of the

sink line: increasing dL flattens it, while increasing dF makes it more steep (Fig. 2.6).

Therefore, increasing dL could be a particularly effective strategy against nascent r-type

organizations, while increasing dF could be effective against the nascent p-types.
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Figure 2.6: The effects of dL (a) and dF (b) on the dynamical system, as seen
through the effect on the sink line. As the desertion rates increase,
the sink line moves up and its slope changes, thus trapping additional
terrorist organizations.

2.5.3 Minimization of Strength S

Counter terrorism (CT) is often the problem of resource allocation among competing

strategies. Therefore, suppose that resources have become available towards a CT op-

eration against the terrorist organization. Namely, suppose we can remove leaders and

operatives in a single blow (unlike the parameters b,k in the model which take a grad-

ual toll). A reasonable approach to allocating these resources efficiently would be to

divide them between operations targeting the leadership and those targeting the foot

soldiers in such a way that the terrorist organization’s strength S is minimized8. How-

ever, by some simplified economic analysis, it is possible to show (see appendix) that

this counter-terrorism strategy is in general suboptimal. Instead, for a truly effective

resource allocation, it is necessary to consider the dynamics of the organization being

targeted and the true optimum may be considerably different. For example, when the

ratio of promotion to recruitment is relatively large (i. e. p
r � 0), then the optimum

shifts increasingly towards attacking the foot soldiers since they become much harder to

8Mathematically, this would be two variable minimization of S constrained by a budget.
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replace than leaders.

On an intuitive level, the reason why the strategy is suboptimal is because often,

the losses we can inflict most effectively on the organization are precisely those losses

that the organization can restore most easily. Hence, in the long-term a strategy targeting

strength S would be ineffective. Instead, when making a CT strategy it would be valuable

to understand the target organization’s dynamics, and in particular, to build a dynamical

model. Such a model would help because it can identify an organization’s unique set

of vulnerabilities due to the composition of its human capital and its properties as a

dynamical system.

2.6 Conclusions

Much of the benefit of mathematical models is due to their ability to elucidate the log-

ical implications of empirical knowledge that was used to construct the model. Thus,

whereas the empirical facts used to construct the models should be uncontroversial, their

conclusions should offer new insights. The model proposed here is a very simplified de-

scription of real terrorist organizations. Despite its simplicity, it leads to many plausible

predictions and policy recommendations. Indeed, the simplicity of the model is crucial

to making the model useful. More detailed models of this kind could provide unparal-

leled insights into counter-terrorism policies and the dynamics of terrorism.
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APPENDIX

2.A Appendix

2.A.1 The Dynamical System

The original differential equations are:

dL
dt

= pF−d L−b (2.1)

dF
dt

= r(mL+F)−d F− k (2.2)

If we wished to incorporate the drain of the foot soldiers due to promotion (−pF) in

Eqn.2.2, then we could adjust the original parameters by the transformation r→ r− p

and m→ rm
r−p . However, this would affect some of the analysis below, because for

r < p it would not longer be the case that r > 0, even though rm > 0 would still hold

true. Alternatively, we could change the internal losses parameter for foot soldiers :

dF → dF + p and break the condition dF = dL.

The linearity of the system of differential equations makes it possible to analyze the

solutions in great detail by purely analytic means. The fixed point is at:

L∗ =
kp−b(r−d)

d(r−d)+ rmp
F∗ =

kd + rmb
d(r−d)+ rmp

(2.3)

The eigenvalues at the fixed point are

λ1,2 =
r−2d±

√
(r−2d)2 +4(rmp+d(r−d))

2
(2.4)

From Eqn.(2.4), the fixed point is a saddle when rmp+d(r−d) > 0, i. e. r−
√

r2+4rmp
2 <

d <
r+
√

r2+4rmp
2 (physically, the lower bound on d is 0). The saddle becomes a sink if
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r < 2d and rmp + d(r−d) < 0. By Eqn.(2.3), this automatically gives F∗ < 0, i. e. the

organization is destroyed9. It is impossible to obtain either a source because it requires

r− 2d > 0 and rmp + d(r− d) < 0, but the latter implies d > r, and so r− 2d > 0 is

impossible; or any type of spiral because (r− 2d)2 + 4(rmp + d(r− d)) < 0 is alge-

braically impossible10. It is also interesting to find the eigenvectors because they give

the directions of the sink and trend lines:

e1,2 =

 2p

r±
√

r2 +4rmp

 (2.5)

We see that the slope of e2, which is also the slope of the sink line - the stable manifold -

is negative. Therefore, we conclude that the stable manifold encloses, together with the

axes, the region of neutralized organizations. Concurrently, the slope of e1 - the trend

line i. e. the unstable manifold - is positive. Thus, the top half of the stable separa-

trix would point away from the axes, and gives the growth trend of all non-neutralized

organizations (∆F
∆L = r+

√
r2+4rmp
2p ).

2.A.2 Proof of the theorem

Recall, we wish to show that a terrorist organization that experiences both a decline in

its strength and a decline in the number of its foot soldiers will be destroyed. The proof

rests on two claims: First, a p-type organization cannot experience a decline in strength,

and second, an r-type organization cannot experience a decrease in F (for a graphic

illustration see Fig. 2.7). Thus, both a decline in strength and a decline in the number

of foot soldiers cannot both occur in an r-type organization nor can they both occur in

9Of course, the dynamical system is unrealistic once either F or L fall through zero. However, by
the logic of the model, once F reaches zero, the organization is doomed because it lacks a pool of foot
soldiers from which to rebuild inevitable losses in its leaders.

10The degenerate case of λ = 0 has probability zero, and is not discussed.
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Figure 2.7: The phase plane with possible (solid blue) and impossible (dashed red)
trajectories, and lines of equal organization strength (green). Because
orbits of the p-type must experience an increase in strength S, the left
red line cannot be an orbit. Also, r-type orbits must experience an
increase in F , and so the right red line cannot be an orbit either.

a p-type organization. Hence, such a situation can only occur in the region of defeated

organizations.

As to the first claim, we begin by showing that the slope of the sink line is always

greater than the slope of the iso-strength lines (= −m). By Eqn. (2.5) the slope is
r−
√

r2+4rmp
2p = −m 2

1+
√

1+4 mp
r

> −m. Therefore, the flow down the sink line has dS
dt >

0 (Down is the left-to-right flow in the figure). Now, we will show that in a p-type

organization, the flow must experience an even greater increase in strength. Let A be

the matrix of the dynamical system about the equilibrium point and let the state of the

terrorist organization be (L,F) = d1e1 + d2e2 where e1,e2 are the distinct eigenvectors

corresponding to the eigenvalues λ1,λ2. Consideration of the directions of the vectors

(Eqn.(2.5)) shows that for a p-type organization, d1 > 0 and d2 < 0. The direction of

flow is therefore d1λ1e1 + d2λ2e2. Notice that λ1 > 0,λ2 < 0, and so the flow has a

positive component (= d1λ1) in the e1 direction (i. e. up the trend line). Since the flow
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along e1 experiences an increase in both L and F , it must experience an increase in

strength. Consequently, a p-type organization must have dS
dt which is even more positive

than the flow along the sink line (where d1 = 0). Thus, dS
dt > 0 for p-types.

As to the second claim, note that r-type organizations have d1 > 0 and d2 > 0. More-

over, in an r-type organization, the flow d1λ1e1 +d2λ2e2 has dF
dt greater than for the flow

up the right side of the sink line (right-to-left in the figure): the reason is that e1 points

in the direction of increasing F and while in an r-type d1 > 0, along the sink line d1 = 0.

The flow up the sink line has dF
dt > 0, and so dF

dt > 0 in an r-type organization. In sum,

dS
dt < 0 simultaneously with dF

dt < 0 can only occur in the region d1 < 0 - the region of

defeated organizations. QED.

2.A.3 Concrete Example of Strength Minimization

In subsection 2.5.3 we claimed that the task of minimizing S is different from the optimal

counter-terrorism strategy. Here is a concrete example that quantitatively illustrates this

point. Suppose a resource budget B is to be allocated between fighting the leadership

and fighting the foot soldiers, and furthermore, that the cost of removing l leaders and f

foot soldiers, respectively, is a typical convex function: c1lσ +c2 f σ (c1 and c2 are some

positive constants and σ > 1)11. Notice that whereas uppercase letters L,F indicate the

number of leaders and foot soldiers, respectively, we use lowercase l, f to indicate the

number to be removed. The optimal values of l and f can be easily found graphically

using the standard procedure in constrained optimization: the optimum is the point of

tangency between the curve B = c1lσ + c2 f σ and the lines of constant difference in

strength: ∆S = ml + f = constant (Fig.2.8(a)). However, as illustrated in Fig. 2.8(b), if

11σ > 1 because e. g. once the first say 20 easy targets are neutralized, it becomes harder to find and
neutralize the next 20 (the law of diminishing returns.) In any case the discussion makes clear that for
most cost functions the suggested optimum would be different from the true optimum.
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Figure 2.8: Graphical calculation of optimal budget allocation (a) and contrast
between minimization of S and the actual optimum (b). In (a), the
optimal choice of (l, f ) is given by the point of tangency between the
feasible region and the lines of constant S. In (b), the red line is the
sink line. The minimization of S through the removal of about 20
leaders and 400 foot soldiers would not bring the organization under
the sink line, but a different (still feasible) strategy would.

such a strategy is followed, the terrorist organization may still remain out of control. It

is preferable to choose a different strategy - in the example it is the strategy that focuses

more on attacking the foot soldiers and thus brings the organization under the sink line

(red line), even though the ∆S is not as large. In general, the difference between the

strategies is represented by the difference between the slope of the sink line and the

slopes of the lines of equivalent damage to strength. The latter always have slope −m

while the former becomes arbitrarily flat as p
r → ∞.
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CHAPTER 3

INTERDICTION OF A MARKOVIAN EVADER

Chapter Abstract Network interdiction is a combinatorial optimization problem on

an activity network arising in a number of important security-related applications. It is

classically formulated as a bilevel maximin problem representing an “interdictor” and

an “evader”. The evader tries to move from a source node to the target node along the

shortest or safest path while the interdictor attempts to frustrate this motion by cutting

edges or nodes. The interdiction objective is to find the optimal set of edges to cut

given that there is a finite interdiction budget and the interdictor must move first. We

reformulate the interdiction problem for stochastic evaders by introducing a model in

which the evader follows a Markovian random walk guided by the least-cost path to the

target. This model can represent incomplete knowledge about the evader and the graph

as well as partial interdiction. We formulate the optimization problem for this model and

show how, by exploiting topological ordering of the nodes, one can achieve an order-of-

magnitude speedup in computing the objective function over a naive algorithm. We also

introduce optimization heuristics based on betweenness centrality. These can rapidly

find high-quality interdiction solutions by providing a global view of the network.1 2

3.1 Introduction

Mathematical modeling of network interdiction originated in the study of military sup-

ply chains and interdiction of transportation networks [1, 2]. The problem is currently

studied in different classes of networks and in a variety of contexts, and finds appli-

cations in countering of nuclear proliferation programs [3], control of infectious dis-
1This chapter is released under Los Alamos National Laboratory LA-UR-08-06551
2Joint work with Aric Hagberg, David Izraelevitz and Feng Pan - Los Alamos National Laboratory
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eases [27], and disruption of terrorist networks [5]. The underlying networks may rep-

resent transportation networks, but more generally may be social or activity networks.

Recent interest in the problem has been in part due to the threat of smuggling of nu-

clear materials and devices [6]. In the case of nuclear smuggling, interdiction might

correspond to the installation of special radiation-sensitive detectors along the selected

transportation edges.

The problem is often posed in terms of two agents called “interdictor” and “evader”

where the evader attempts to minimize some objective function in the network, e.g.

distance, cost, or risk when traveling from network location s to location t, while the

interdictor attempts to limit success by removing network nodes or edges. The inter-

dictor has limited resources and can thus only remove a finite set of nodes or edges. In

the simplest formulation, the interdictor seeks to identify a set of edges (or nodes) on

the network whose removal maximizes the cost of the least-cost path from a source to

a destination node, while the evader seeks to find and traverse the best unimpeded path.

This interdiction problem is known as the “most vital edges” (or “most vital nodes”)

problem [7] and it has been shown to be NP-hard [8] and NP-hard to approximate to

better than a factor of 2 [9]. Methods for solving network interdiction problems have

included exact algorithms for solving integer programs, such as branch-and-bound, as

well as decomposition methods to rebuild the network by iteratively adding relevant

paths to reduce the size of both the underlying network and the number of binary de-

cision variables. A more recent approach, based on structure-dependent cutting planes,

exploits the relationship between the ordered set of evading paths and binary interdiction

variables [10].

A common assumption in many studies is that there is perfect knowledge of hard-to-

compute network parameters, such as the cost to the evader to traverse an edge in terms
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of resource consumption or probability of detection. However, it is clear that the evader,

and, to a lesser extent, the interdictor, have unreliable and incomplete information about

the network. This uncertainties place the interdiction problem within stochastic opti-

mization, where one seeks to find those edges that are vital on average. Indeed, under

uncertainty the evader must be described in probabilistic terms. By constructing such

probabilistic evader models one can expect to develop more robust interdiction solu-

tions. This problem of stochastic interdiction has been the focus of a number of recent

studies [3, 11, 12, 13, 14].

Failure to account for evader uncertainty can lead to suboptimal decisions, namely,

solutions that do not maximize (and even decrease) the evader’s expected cost to reach

the target. Consider for instance the network in Fig. 3.1. There are four paths from the

source to the target: one each through nodes 1,2,3 and the one direct path (0,5) with

costs 9,8,8 and 8.01, respectively. If only one edge can be removed, the solution in

the least-path-cost formulation is to remove edge (4,5) which increases the path cost

from 8.0 to 8.01. However if the evader is unable to determine which path has the least

cost and takes any path with equal (or nearly equal) probability, then this solution is not

optimal. Interdiction at (4,5) actually decreases the expected cost from ≈ 8.25 to 8.01,

because it removes the costly path through node 1. The optimal choice is interdiction

of any one of the edges (0,2), (2,4), (0,3), or (3,4), which increases the expected cost

from ≈ 8.25 to ≈ 8.33.

In this paper we propose a Markovian network interdiction framework which can

capture a wide range of network evader behavior (Sec. 3.2). We then demonstrate the

general framework with a simple model based on low-level evader decision-making pro-

cesses (Sec. 3.3). Finally we develop efficient heuristic algorithms for the interdiction

problem based on edge betweenness centrality and predicted evader motion, and then
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Figure 3.1: Example network where the least-cost path interdiction formulation
produces a suboptimal solution ((4,5)). Interdicting any one of (0,2),
(2,4), (0,3), or (3,4) is the true optimum.

present performance results comparing various heuristic methods (Sec. 3.4).

3.2 The interdiction model

Our interdiction formulation is a stochastic generalization of the max-min shortest path

interdiction problem [1, 2]. In the max-min formulation an evader attempts to traverse a

network on a path from an origin s to a destination t. Let p be some path between s and

t in a graph G(N,E) with the set of nodes N and the set of weighted edges E. Let c(p)

be the path cost computed by summing the cost Ci j over the edges (i, j) of p, where Ci j
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may include costs due to interdiction.3 The edge costs are assumed to be given in the

problem and may depend on direction (in the case that G(N,E) is a directed graph). In

the following “edge cost” is used here interchangeably with “edge weight”.

The network interdiction strategy is represented by choosing edges to interdict from

the feasible interdiction set R which is typically a subset of the edge set E with a limited

size (budget) B. We set the value of ri j = 1 if edge (i, j) is interdicted, and ri j = 0

otherwise. Let Di j ≥ 0 be the added cost of traversing (i, j) when it is interdicted. When

the value of Di j is very large all paths avoid the interdicted edge (i, j) (assuming that

there is an alternative path) which effectively removes the edge (i, j) from the graph.

One may write C′i j = Ci j + ri jDi j but it is more convenient to “drop the primes” that is,

to use Ci j at all times to denote cost that includes possible interdiction. This makes the

matrix C a function of r.

In the shortest-path model, the evader only travels on least-cost paths, and is fully

aware of interdiction decisions. This gives the optimization problem

max
r∈R

min
p∈PT

c(p) , (3.0)

where c(p) is implicitly a function of r. The above formulation is for interdiction of

edges but of course, a similar problem could be considered for node interdiction by

introducing for all i ∈ N node costs Di and decision variables on nodes ri etc.

A stochastic version of the interdiction problem can be constructed by supposing

that an evader may take any path from s to t, according to some probability distribution,

rather than always choosing the least-cost path. Randomness in the evader path deci-

sion is caused by uncertainty about interdiction decisions r or network costs, mistaken
3The additivity of costs is natural for resources such as money or time, but it also holds for simple

models of risk. The probability of evasion, q(p) on p could be represented through the cost c(p) by
setting c(p) = − logq(p) and similarly for each edge in the path. If the probabilities of evasion on all
edges of p are independent events, then q(p) is just the product of their probabilities, or equivalently the
exponential of the sum of the edge costs: q(p) = exp

(
−∑(i, j)∈p Ci j

)
.
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cost computations, or possibly even by intent to increase unpredictability. The path p

becomes a random variable distributed as P(p), and the expected cost of traveling from

s to t is then

E[c] = ∑
p∈PT

P(p)c(p) . (3.0)

The interdiction problem becomes

max
r∈R

∑
p∈PT

P(p|r)cr(p) , (3.0)

where P(p|r) is now the probability of traversing a path given the interdiction set r. The

conditional probability P(p|r) implicitly contains the evader’s strategy. The shortest-

path optimization problem (3.2) is clearly just a special instance of (3.2) when the ex-

pectation is conditioned on traversal of only least-cost paths.

3.2.1 Markovian evaders

In order to compute P(p|r) values and E[c] it is necessary to develop stochastic evader

models. Consider for simplicity a Markov random walk for the evader model where the

evader chooses the next step without memory of the previous steps. In general an evader

might follow a non-Markovian random walk but a Markovian model achieves a good

balance between realism and computational efficiency. In the Markovian model the

expected cost E[c] can be found simply for all possible starting locations (as described

below) while for the non-Markovian evader such a computation would likely involve

computing c(p) and P(p|r) for each possible path p. Since the number of possible

paths between two nodes can be enormous, feasible computations of E[c] would require

simplifying the set of allowed paths, which would reduce solution realism.

Complete information about a Markovian evader is encoded in a distribution of start-

ing nodes, a, and a Markovian transition probability matrix, M. An element Mi j of this
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matrix is the probability that an evader at node i will move along edge (i, j). The dis-

tribution of starting nodes is assumed to be given and independent of the interdiction

strategy r, while the M matrix is assumed to be determined as soon as the graph and r

are known. It is convenient to set the single entry Mtt = 0. Then M can be interpreted

as an evader model where the evader is removed from the network when reaching the

target t. We also assume that the cost of traversing edges is given by a matrix C.

Armed with a,M,C the objective E[c] can be computed by writing and solving

a recurrence relation for the the expected cost of paths that reach t as a function

of path length.4 Suppose a path p from s to t is specified by the edge sequence

(s,x1),(x1,x2), ...,(xl, t). The conditional probability that the evader will traverse this

path is Msx1Mx1x2...Mxlt . The cost of this path is

c(p) = Csx1 +Cx1x2 + ...+Cxlt , (3.0)

where Ci j includes the cost of passing an interdicted edge if (i, j) is interdicted. Let π(n)

be the probability vector whose j coordinate is the probability that a path of length n

begins at s and ends at j. Thus, π(n) is the sum of the probabilities of all paths of length

n that end at j. Since M defines a Markov chain, π(n) = π(n−1)M = π(0)Mn = aMn,

where a is the distribution over the starting nodes. If all paths must begin at s, then a is

just the unit vector in the s direction.

Let the vector h(n) represent the expected cost for paths of length n that terminate at

each node. Namely the j coordinate h(n)
j is the expected cost of a path with length n that

terminates at j. The vector satisfies the recurrence

h(n)
j = ∑

i
h(n−1)

i Mi j +π
(n−1)
i Mi jCi j . (3.0)

4The length of a path p is the number of edges in the path, while the cost c(p) of a path is the sum of
the costs of the edges. These are equal only if the cost of each edge is unity.
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The entire vector can be written as

h(n) = h(n−1)M+π
(n−1)(M�C) , (3.0)

where M�C is the matrix formed by element-wise multiplication of M and C. The

expected cost of paths of any length is given by

h :=
∞

∑
n=0

h(n) . (3.0)

Using the relation
∞

∑
n=0

π
(n) =

∞

∑
n=0

π
(0)Mn = a(I−M)−1 , (3.0)

and summing Eq. (3.2.1) over all n gives

h = a(I−M)−1 (M�C)(I−M)−1 , (3.0)

where I is the identity matrix.

Equation (3.2.1) is key to our approach: the vector element, ht , expresses in closed

form the expected cost of paths starting at s and ending at t. Each part of Eq. (3.2.1)

has an intuitive meaning. The vector a(I−M)−1 is the expected number of times that

each of the nodes is visited by the evader when starting at a distribution a [11, p.419];

the vector a(I−M)−1(M�C) is the expected cost of reaching each of the nodes from

their immediate predecessor nodes; and h gives the expected cost of reaching each of

the nodes from the starting distribution a.

The interdiction objectiveis to maximize ht . Because the interdiction variable r af-

fects the costs and then the matrix M, this results in the nonlinear optimization problem

max
r∈R

[
a(I−M)−1 (M�C)(I−M)−1

]
t
. (3.0)

This optimization problem could be termed the Markovian Evader Network Interdiction

(MENI) problem.
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This expression can be generalized for the case of multiple evaders where each

evader represents a threat scenario or an adversarial group. Each evader k then has

certain probability w(k) of occurring (∑k w(k) = 1), as well as a distinctive source distri-

bution a(k), target node t(k) and transition matrix M(k). The generalized objective is a

weighted sum of Eq. (3.2.1) over all evaders.

The specifics of the Markovian evader model would effect whether the sum in

Eq. (3.2.1) converges. In general it is sufficient to know that (I−M)−1 exists because

Eq. (3.2.1) implies

‖h‖1 ≤
∥∥a(I−M)−1M(I−M)−1∥∥

1 max
(i, j)∈E

Ci j , (3.0)

where the right-hand side is the average path length before reaching the target times

the maximal edge cost. Letting v1 = a(I−M)−1 and v2 = v1M, observe that ‖h‖1 ≤

k
∥∥v2(I−M)−1

∥∥
1 for some constant k > 0. In turn existence is guaranteed if the target

node is an absorbing state of the Markov chain defined by M, that is, a chain where

Mt j = 0 if j , t and t is reached from any node with non-zero probability after finitely

many steps [11, Sec.11.2].5

3.3 Evader models

We now develop a concrete Markovian evader model and introduce and analyze algo-

rithms for finding interdiction sets. Recall that the advantage of stochastic models is not

only the promise of better interdiction solutions but also the additional information they

provide about evader motion. Specifically, with stochastic models and in particular with

Markovian models it is possible to compute probabilities that each node and edge in the
5The M matrix here is the Q matrix in Ref. [11] except for a small detail: Q includes only the transi-

tions between non-absorbing states, but here M does include the absorbing state - the target node t. As a
compensation, we impose Mtt = 0 implying that the evader is removed from the graph upon reaching t.
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network will be traversed - a fact that could be exploited for designing algorithms (see

Sec. 3.A).

3.3.1 Least-cost-guided evader

As was noted in the introduction the evader may often be unable to determine correctly

the least-cost or least-risk path to the target because of limited information about the

network topology, interdiction decisions, or the costs and risks along alternative paths.

Let us suppose then that the errors the evader makes in finding the best path are ran-

dom in the sense that the evader does not systematically overestimate or underestimate

the costs of certain types of paths. The random error assumption implies that at every

node the transition along least-risk path would still be the most likely. To make the dis-

cussion more concrete, recall that the Markovian evader model is specified through the

probability Mi j that evader at node i would traverse i→ j. Therefore, suppose that in

general Mi j increases with the probability of (successful) evasion on path qi j - defined

as the path consisting of the edge (i, j) and then of the least-risk path from j to the tar-

get. One choice is to assume that an evader would traverse edge (i, j) with probability

proportional to qi j, or more generally, proportional to a positive power of qi j

Mi j ∝

(
qi j

qi∗

)λ

, (3.0)

where λ > 0 is a parameter, qi∗ = max j qi j is the probability of evasion if the least-risk

path from i to the target is followed. (The constant of proportionality is found from

∑ j Mi j = 1.) When λ → ∞ the evader moves deterministically along the least-risk path

and when λ → 0 the motion is perfectly random. The least-risk path has the highest

probability, but the difference with other paths vanishes as λ → 0. Hence, the model

can be called the “least-risk-guided evader”
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If the values of the probabilities qi j and qi∗ are not known directly they can be found

by relating them to edge costs. One approach is to find the cost c(pi j) of the least-

cost path p from i through j, and the cost c(pi∗) of the least-cost path pi∗ from i, (see

Eq. (3.2.1) and Fig. 3.2.) Then the probabilities of evasion may be computed from the

cost by the relation qi j = e−c(pi j), and qi∗ = e−c(pi∗). Substitution to Eq. (3.3.1) gives

Mi j ∝ e−λ(c(pi j)−c(pi∗)) , (3.0)

where c(pi j) is the cost of the least cost from i through j to the target.

This model, termed the “least-cost-guided evader”, is similar to one developed for

routing in ad-hoc wireless networks. In that application M is used to determine where

to transmit a message when the final destination cannot be reached directly [16].

In some applications edge costs are easy to obtain but evasion probabilities qi j on

paths are known only poorly or not at all. In those problems it is more natural to assume

Eq. (3.3.1) rather than Eq. (3.3.1) (the costs of all the relevant paths could be found

using Dijkstra’s algorithm.) Eq. (3.3.1) could be independently motivated by suppos-

ing that the evader attempts to minimize costs (as in the least-cost-path formulation)

but uncertainty causes stochastic deviations from the least-cost path. The adherence to

the least-cost path is determined by the parameter λ . This is somewhat similar to the

stochastic motion of a quantum particle.

In the model the parameter λ represents the precision of the information the evader

has about the graph and interdiction decisions. The effect of λ on the motion of the

evader is not linear. Rather for all networks we have studied there is a continuous phase

transition as λ is increased from effectively stochastic regime to deterministic motion,

with corresponding decrease in the average cost of reaching the target node (Fig. 3.3).

Notice that although Mi j values in Eq. (3.3.1) depend on the cost of least-cost path,
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t

s

j

i Mi j ∝ (qi j/qi∗)λ

c(pi j) = 4,qi j = e−4

c(pi∗) = 3,qi∗ = e−3

Figure 3.2: Computation of the transition probabilities Mi j. The least-cost path
from node i to the target t is the path pi∗ (thick red) with cost c(pi∗) =
3. Through node j the shortest path to t is (thin blue) path pi j with
cost c(pi j) = 4. If the probability of evasion on pi j is assumed to
be qi j := q(pi j) = e−c(pi j) then the edge transition probability to j is
Mi j ∝ (qi j/qi∗)λ = e−λ .

when λ < ∞ this dependence is a smooth function of path costs. Thus the new for-

mulation provides a more desirable description of evader motion because it avoids the

sensitivity to path costs seen in the shortest-path evader model.
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Figure 3.3: The cost of reaching the target as a function of λ . No edges have
been interdicted, and the effect is solely due to deviations from the
least-cost path. The evader is the non-treating evader discussed in the
next section, and the underlying network is a 20x20 grid graph with
20 shortcut edges.

3.3.2 Non-retreating evader

A useful variant the least-cost-guided model is the non-retreating evader. In this model it

is assumed that an evader always moves to nodes that are closer to the target node t than

the current node. To represent this model assume that there is zero probability of motion

through (i, j) if node i is at least as close to the target as node j, namely, c(pi∗)≤ c(p j∗),

where c(pi∗) and c(p j∗) are the smallest costs of paths to the target from nodes i and j,
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respectively, computed using Eq. (3.2.1). An interesting effect of this assumption is that

the evader evader would never cross a node or an edge twice.

Consequently the set of nodes becomes a partially ordered set and as a result, there

exists a relabeling σ of the nodes such that if c(pi∗) > c(p j∗) then σ(i) > σ( j). A

simple (non-unique) procedure is to label the target node t as 0 (σ(t) = 0) and then rank

the nodes in the order of their distance (cost) along least-cost path to t, breaking ties

arbitrarily. Computationally, this is the same as the order the nodes are reached by a

shortest path (Dijkstra’s) algorithm starting at t. The transition probability becomes

M̂i j =


Mi j , c(pi∗) > c(p j∗) ,

0 , c(pi∗)≤ c(p j∗) .

In this case all paths must reach the target after at most |N|− 1 steps, where |N| is

the number nodes in G, and hence M̂ becomes nilpotent of power |N|−1. Moreover, by

labeling the nodes up in order of increasing cost, M̂ can be written as a lower-triangular

matrix with zero diagonal. For example, if the evader traverses a 2× 3 grid with the

target at one corner then one possible σ gives the matrix

M̂ =



0

1 0

1 0 0

0 1 0 0

0 0.5 0.5 0 0

0 0 0 0.5 0.5 0


.

The special matrix structure facilitates an order-of magnitude speedup in the com-

putation of Eq. 3.2.1. For a general M, computing a(I−M)−1 involves Gaussian elim-

ination at a cost of 2|N|3/3 operations. For a nilpotent lower-triangular M̂ the cost falls
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to O(|N|2) since we can use backward-forward substitutions instead of Gaussian elimi-

nation. The cost of computing the objective function Eq. (3.2.1) is also expected to drop

to O(|N|2) despite the need to reorder the matrix C when the nodes are relabeled.

3.4 Solving the Markovian Evader Interdiction Problem (MENI)

The challenge of network interdiction consists of developing both realistic models and

tractable algorithms. The Markovian evader model adds realism but does not reduce the

computational complexity of finding good interdiction solutions. Indeed it is clear that

the Markovian model is computationally hard because in the limit of λ → ∞, the model

becomes the least-cost interdiction problem which is NP-Hard [7, 8] and also hard to

approximate [9]. Therefore, this section discusses solution heuristics based on network

structure.

A common approach to solving many combinatorial optimization problems is based

on local, or neighborhood, search algorithms. In general, such local search methods

such as simulated annealing (SA), genetic algorithms (GA), and Tabu search (TS) [18],

take a random solution (or a population thereof) and improve it through a series of of

incremental changes. These class of algorithms can often provide good solutions but

usually do not guarantee optimality.

We implemented the above local search algorithms and tested them on the Marko-

vian evader network interdiction problem for some sample networks. Even after tuning

parameters in the algorithms we found that all the algorithms gave comparably poor

performance. It was clear that the solutions were highly suboptimal. For instance in

many cases it was easy to markedly improve the solution by simply interdicting edges

incident to the target nodes.
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It is not surprising that general local search algorithms do not work well for large

instances of Markovian evader network interdiction: the interdiction solution space is

exponential in the budget so any iterative improvement process of local search can only

explore a very small fraction of solutions in a reasonable number of steps. In addition

the solution space is very rugged as there are synergies (non-linear gains) when multiple

edges are interdicted on paths going to a single target because the evader is prevented

from easily bypassing the interdicted edges.

3.4.1 Global heuristics

The weak performance of the local search algorithms suggests that fast high-quality

heuristics can only come from more specialized solvers that exploit the structure of the

interdiction problem. Particularly promising algorithms are those that take advantage of

ranking functions (called here “heuristics”) that rank edges according to global infor-

mation about graph structure. (The specifics of the function are explained in the next

subsection.)

The ranking functions are to be incorporated into two greedy procedures for con-

structing the interdiction set: Direct Greedy Heuristic (DGH) and “Randomized Greedy

Heuristic” (RGH). DGH simply performs greedy sequential selection of edges based on

their rank. The ranking function HS is computed for all edges e based on the structure

of the graph and the current interdiction set S (Alg. 1).

This algorithm is fast since it merely has to compute the ranking heuristic B times.

A concern with such an approach is that it may be hard to find high-accuracy global

heuristics that also run fast. It will be shown later in this section that graph betweenness

centrality performs surprisingly well.
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Algorithm 1: Direct Greedy algorithm using global heuristic H (DGH) for budget
B

S← ∅

while B > 0 do

S← S∪{argmaxe∈ErS HS(e)}, resolving ties arbitrarily.

B← B−1

Output(S)

A more serious issue is that it is not difficult to find instances of MENI in which

betweenness centrality performs poorly because it finds edges that are easy to bypass.

This prompted the development of a more reliable algorithm, RGH. The algorithm is in

turn based on a very simple local search method, a “randomized greedy” (RG) algorithm

show in Alg. 2. In RG the interdiction set S is constructed incrementally by taking the

best from a sample of edges. Namely, at each step a random sample EL ⊂ E rS of size

L is generated and then the edge e that gives the greatest increase in the evader cost is

added to S. The sample size L is typically much smaller than the number of edges in

the graph because it is computationally expensive to calculate the change ∆S(e) in the

objective function due to a single edge.

The RG algorithm performs similarly to the other local search methods we consid-

ered above. However, by itself it is not expected to have good performance (performance

data is discussed in the next subsection). The RGH algorithm makes the RG algorithm

more efficient using global information. Specifically, rather than randomly sampling

from E rSit chooses some edges that were ranked highly by a heuristic HS (Alg. 3).

Note that the RGH algorithm has two selection steps - first is the selection of the

sample which is followed by the selection of the best edge in this sample. Only the

edge with the greatest gain is selected, where gain refers to increase in evader cost. The
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Algorithm 2: Randomized greedy (RG) construction of the interdiction set S with
budget B and sample size L

S← ∅

while B > 0 do

EL←{L random elements from E rS}

for all e ∈ EL do

∆S(e) := h(S∪{e})−h(S)

S← S∪
{

argmaxe∈EL
∆S(e)

}
, resolving ties arbitrarily.

B← B−1

Output(S)

Algorithm 3: Randomized greedy with heuristic (RGH) for budget B and sample
size L

S← ∅

while B > 0 do

EL←
{⌊L

2

⌋
random elements from E rS

}
EL← EL∪

{
e
∣∣e ∈ top

⌊L
2

⌋
elements ranked by HS(e)

}
for all e ∈ EL do

∆S(e) := h(S∪{e})−h(S)

S← S∪
{

argmaxe∈EL
∆S(e)

}
, resolving ties arbitrarily.

B← B−1

Output(S)

running-time complexity of this algorithm is O(BL), assuming that the cost of comput-

ing the heuristic is dominated by the cost of computing the gain.

Note that in Algorithm 3 only some of the edges are selected using the heuristic and

the rest are selected randomly. Allowing some edges to be selected randomly ensures
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that the algorithm is not deterministic. Determinism would prevent exploring the entire

set of feasible solutions even in principle. It may be useful for some problems to further

increase exploration by replacing argmax with a stochastic selection biased towards the

best edges.

3.4.2 Betweenness centrality heuristic

Our next task is to introduce ranking of edges based on global information about the

problem. One such ranking is to compute edge “betweenness centrality” metric - the

fraction of least-cost paths between pairs of nodes in a network that cross a given

edge [19]. This metric identifies those edges that are critical to connectivity within a

network because they participate in a large number of least-cost paths linking nodes on

a network, such as bridge edges that joins two graph components.

An effective heuristic based on this notion could be constructed as long as we also

consider the distribution of source sites, a and the target node of the evader t. Recall

that as is the probability that the evader would start at node s. Let σst be the number

of least-cost paths between nodes s and the target node t in the graph, and let σst(e) be

the number of those paths that pass through edge e. Therefore, we define the source-

weighted centrality of edge e with respect to t as the sum:

Ca,t(e) = ∑
s:t,s∈V

as
σst(e)

σst
. (3.0)

Finally, we let HS(e) = Ca,t(e) in algorithms 1 and 3 and this defines the algorithms

“DGH-betweenness” and “RGH-betweenness”, respectively. Notice that this quantity

needs to be re-computed during execution: as the interdiction set S is increased, the

costs of the edges change and so are the least-cost paths.

An algorithm for calculating a metric of this kind for all e∈ E in O(|E|+ |N| log |N|)
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time is found in Ref. [20]. For the RGH algorithm, the running time of this algorithm

equals asymptotically the complexity of the original RG algorithm because the time

for computing change in the evader cost due to the addition of a single edge (Eq. 3.2.1)

dominates the cost of the heuristic (assuming a constant number of evaders and Θ(|E|) =

|N|).

This heuristic is of course similar to the least-cost evader model (Subsec. 3.3.1)

which is also based on the least-cost paths to the target. A concern in both cases is high

sensitivity to edge costs. Moreover, when used in a heuristic it would seem unsuitable to

interdiction of stochastically-moving evaders. Fortunately, the least-cost path from each

node tends to be the most probable evader path in that model. For any value of λ > 0

interdiction of the least-cost path should shift the evader to taking alternative paths,

which are by definition more costly. Interdicting of least-cost path is provably optimal

in simple types of interdiction problems where a single pair of source-target nodes is

connected by several non-intersecting paths. It is interesting that when the paths to the

target do intersect, the least-cost path is not always the best location for interdiction.

Indeed, it is possible to construct graphs where as a result of attracting evaders from

multiple source nodes, relatively high cost paths are more likely to be traversed than

the least-cost paths. As a result one finds examples where betweenness-based heuristics

(even RGH-betweenness) consistently find poor interdiction locations (for sufficiently

small λ ). There an alternative heuristic, termed “motion likelihood” is superior. Briefly,

the idea is to use for the ranking function the probability of the evader transitioning each

edge. This is calculated from the model for evader motion. While promising, algorithms

based on evader motion were found to be inferior in solution quality and running time

compared to the current betweenness centrality-based heuristic (see the Appendix for a

detailed discussion).
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3.4.3 Performance Results

Theoretical consideration suggest that in interdiction problems DGH would have faster

running time but RGH would find higher quality solutions. Unexpectedly simulations

showed that DGH is the best algorithm in both running time and solution quality. For

the simulations we constructed 50 network interdiction problems and also run the al-

gorithms on real transport networks. Each of the simulated networks was a 400-node

20x20 grid graph with 20 randomly-added “jump” edges representing air links. The

weights on all edges were sampled randomly from 0.5..1.5.

The results of the comparison show that both DGH- and RGH-betweenness out-

perform the basic algorithm (RG) Fig. 3.4. This advantage was maintained in both

λ = 0.001 and λ = 1000 cases. The performance of the heuristics on empirical trans-

portation network was qualitatively similar Fig. 3.5.6 Indeed, in those larger networks

the RG algorithm, being a local search algorithm, cannot efficiently find any solutions

that materially increase the evader’s cost. All other models of transportation networks

that were tried gave qualitatively identical performance (including GTG-based prob-

lems [17], as well as networks generated from Waxman’s model RG2 [22].)

The gain from the heuristics is significant in a more absolute sense: The solutions

found by the algorithms were benchmarked to the cost found by a variant of RG that

exhaustively considers all the edges in the graph. It was found that the global heuristic

found solutions which were always > 95% of the exhaustive solution and sometimes

ever superior to it. This implies that it finds solutions almost indistinguishable from

solutions found by an algorithm using about 80 times as many cost evaluations.

6(1) 9559-node 29682-edge Washington, DC network with weights indicating time of travel. (2) 3353-
node 8859-edge Rome, Italy network with costs indicating distance. The networks are available at the DI-
MACS 9th Implementation Challenge website http://www.dis.uniroma1.it/˜challenge9/
download.shtml
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When observing the simulations for the DC networks we saw that sometimes a

larger interdiction set actually decreased evader cost, for reasons that were illustrated

in Fig. 3.1. The data of Fig. 3.4 shows the best solution found for interdiction S within

budget B (|S| ≤ B) rather than in budget B (|S|= B).

Another interesting finding is that when B is much smaller than the size of the so-

lution space, |E|, there was almost no difference in solution quality between RGH-

betweenness and the much faster DGH-betweenness. Thus, employing the heuristics

directly (without computing the gain in cost) causes no apparent loss of solution qual-

ity. For the larger budgets relative performance is even better for DGH-betweenness

(one-tailed t statistic has probability < 0.001 at 0.05 level.) This is probably due to the

excessive greediness of the RGH-betweenness as it selects not only the highest between-

ness edges but also the edge with the greatest gain in evader cost, as compared to just

one greedy step in DGH-betweenness. In many other discrete optimization problems it

was noted that greedy algorithms tend to find weak local optima rather than better or

even global optima.

When using DGH the running time is improved by factor of > L over RGH (where L

is the RGH sample size, in the above L = 20). Thus the fast DGH-betweenness algorithm

offers the best running time and solution quality.

3.5 Conclusions and Outlook

The main contribution of this work are:

• a stochastic model of the evader motion based on Markovian guided random walk

• demonstration the importance of stochastic models as opposed to simple least-cost
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Figure 3.4: Comparison on the grid networks between a basic RG algorithm and
DGH and RGH which use the betweenness heuristic. The data shows
the average of 50 simulated problems per value of λ : (top) λ = 0.001,
(bottom) λ = 1000. The convergence of the algorithms around budget
of 400 for λ = 0.001 occurs because most of the paths to the targets
become interdicted many times. To compare solutions across several
different networks with different interdiction complexities, the solu-
tion on each network was normalized by the evasion cost on this net-
work without any interdiction. There were two equally likely evaders
(corresponding to two targets) and 10 source nodes selected at unifor-
mally at random (note that the number of source nodes does not effect
either solution quality or running time). The sample size in RG and
RGH-betweenness was L = 20.

path models

• demonstration the unsuitability of local search heuristics to network interdiction

• construction a pair of global search heuristics based on between centrality

In future work it would be very useful for network interdiction and other applications

to construct additional heuristics for finding edges that cannot be cheaply bypassed by

the evader.
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Figure 3.5: Comparison on the Washington, DC network between a basic RG al-
gorithm and algorithms which use global heuristics. The results on
the Rome network were qualitatively similar. Note the much smaller
maximum budget compared to the previous set of simulations. The
data shows the average of 5 simulated problems per value of λ : (top)
λ = 0.001, (bottom) λ = 1000. The interdiction added cost, Di j, was
half the diameter of the network (specifically, its largest connected
component.) As above, the solution on the network was normalized
by the evasion cost on this network without any interdiction. For this
much larger graph, the number of sources was increased while main-
taining that about 2.5% of the nodes are source nodes. The differences
between DGH and RGH are not statistically significant and both beat
RG (one-tailed t statistic has probability < 0.01 at 0.05 level.)

The evader model developed here is a step toward a more refined model that more

closely ties evader motion with its computational and informational constraints. Re-

search into more refined models promises further gains in computational performance

and realism.
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APPENDIX

3.A The Motion Heuristic

One promising heuristic is the evader motion itself: Edges that are likely to be traversed

by the evader are also likely to be good interdiction locations. Intuitively, interdiction of

such edges would compel the evader to take alternative paths which are often consider-

ably more costly.

This heuristic is also appealing because it should be able to avoid ineffective inter-

diction in cases where there are several paths to the target of approximately equal length.

Such a situation requires interdiction of all paths (which might be too expensive) if in-

terdiction is to have any effect. The heuristic would sense this because the likelihood

of motion would be split equally among alternative paths, which would decrease their

ranking compared to interdiction elsewhere on the graph.

The technical details of the implementation are as follows. For any given Markovian

evader model M and starting vector a the expected number of times the evader crosses

an edge e = (i, j) is

E[e] = a(I−M)−1Mi j . (3.0)

The motion likelihood algorithms (termed “DGH-likelihood” and “RGH-likelihood”)

are constructed by setting HS(e) := E[e] in Alg. 1 and 3, respectively. Notice that M

is an implicit function of the interdiction set S because S affects edge costs and hence

evader motion as expressed through M. Therefore, it is necessary to recompute E[e] at

each step of the algorithm. Fortunately, this heuristic is relatively inexpensive to com-

pute and can evaluated for all edges in the network simultaneously at asymptotic time of

O(|N|2) for the non-retreating evader model (for a general M it takes O(|N|3) because of
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Figure 3.6: Example network where motion likelihood heuristic outperforms the
betweenness heuristic.

Gaussian elimination.) This makes it more expensive than betweenness centrality rank-

ing (O(|E|+ |N| log |N|)) but cheaper than computing evader cost in Eq. (3.2.1), which

would cost Θ(|N|2) per edge in the non-retreating model.

It is easy to find examples where the motion heuristics outperform the betweenness

heuristics, as in Fig. 3.A. Suppose an evader must move in this graph from S to T , and

the interdiction problem has budget 1. There are four paths through nodes b, n1, n2 and

h with costs 2, 2 + y, 2 + y and 2 + x, respectively and consider the case where x > y.

The edges of highest betweenness are (S,b) and (b,T ), and for sufficiently large value

of λ they are the optimal interdiction locations since they lie on the least-cost path.

However, for a range of values [0..λc] (where λc is a constant that depends on x and y)

the edge with the highest likelihood of motion is (m,T ) because it is the confluence of

two distinct paths whose cost is close to the cost of the least-cost path (assuming y� 1).
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Interdiction of this edge would redirect the evader towards both the least-cost path, but

also towards the high cost path through h (cost 2 + x). Indeed, it is easy to see that in

the limit of λ → 0, interdiction of (m,T ) gives cost Em := 2 + x
2 . Depending on the

values of x and y, Em is greater than the cost after interdiction along the least-cost path,

Eb := 2+ 2y+x
3 (say at edge (b,T )). The difference, x

6 −
2y
3 can be arbitrarily large when

x−y→ ∞. The precise threshold value of λ where the phenomenon appears is not easy

to express analytically.7

By generalizing this example it is possible to construct problem instances in which

motion likelihood is superior to betweenness when the interdiction budget > 1. Notice

also that networks containing this graph motif can defeat not only DGH-betweenness

but also the RGH-betweenness algorithm as long as the number of least-paths is large,

since RGH will not choose the high likelihood edge into its sample.

A wide range of simulations were used to assess those heuristics but the results were

inconclusive. In some simulations such as on 20x20 grids above (Fig. 3.4), motion-

based heuristics outperforms in solution quality equivalent algorithms based on be-

tweenness. Yet in GTG graphs [17] of 100 nodes betweenness performs better. The

recommendation of betweenness (previous section) stems from its faster running time

in both DGH and RGH implementations. As well in the worst simulations betweenness

achieved evader cost equal to 90% cost found by motion likelihood. The inconclusive

findings highlight the need for additional research into those heuristics but also into

novel approximation algorithms that come with guaranteed performance bounds.

7The limit of λ → 0 appears somewhat special because in this case the evader ignores the presence of
interdiction - the added cost on the edge, and so interdiction appears to directly increase cost rather than
redirecting the evader. Actually redirection occurs even in this limit: in the non-retreating evader model,
the probability of motion through (b,T ) is 0 when the total cost on that edge is CbT ≥ 2 + y. Similarly,
there is no motion through (m,T ) if its total cost CmT ≥ 2. Redirection still occurs under arbitrarily small
λ with the more general least-cost-path guided model because it is possible to redirect while contributing
an arbitrarily small amount to expected cost: this contribution consists of the cost of the path times a term
with a negative exponent in the edge cost, so it vanishes.
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CHAPTER 4

OPTIMAL INTERDICTION OF UNREACTIVE MARKOVIAN EVADERS

Chapter Abstract The interdiction problem arises in a variety of areas including mil-

itary logistics, infectious disease control, and counter-terrorism. In the typical formu-

lation of network interdiction, the task of the interdictor is to find a set of edges in a

weighted network such that the removal of those edges would maximally increase the

cost to an evader of traveling on a path through the network.

Our work is motivated by cases in which the evader has incomplete information

about the network or lacks planning time or computational power, e.g. when authorities

set up roadblocks to catch bank robbers, the criminals do not know all the roadblock

locations or the best path to use for their escape.

We introduce a model of network interdiction in which the motion of one or more

evaders is described by Markov processes and the evaders are assumed not to react to

interdiction decisions. The interdiction objective is to find an edge set of size B, that

maximizes the probability of capturing the evaders.

We prove that similar to the standard least-cost formulation for deterministic motion

this interdiction problem is also NP-hard. But unlike that problem our interdiction prob-

lem is submodular and the optimal solution can be approximated within 1−1/e using a

greedy algorithm. Additionally, we exploit submodularity through a priority evaluation

strategy that eliminates the linear complexity scaling in the number of network edges

and speeds up the solution by orders of magnitude. Taken together the results bring

closer the goal of finding realistic solutions to the interdiction problem on global-scale

networks.1 2

1This chapter is released under Los Alamos National Laboratory LA-UR-09-00560
2Joint work with Aric Hagberg and Feng Pan - Los Alamos National Laboratory
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4.1 Introduction

Network interdiction problems have two opposing actors: an “evader” (e.g. smuggler)

and an “interdictor” (e.g. border agent.) The evader attempts to minimize some objective

function in the network, e.g. the probability of capture while traveling from network

location s to location t, while the interdictor attempts to limit the evader’s success by

removing network nodes or edges. Most often the interdictor has limited resources

and can thus only remove a very small fraction of the nodes or edges. The standard

formulation is the max-min problem where the interdictor plays first and chooses at

most B edges to remove, while the evader finds the least-cost path on the remaining

network. This is known as the B most vital arcs problem [1].

This least-cost-path formulation is not suitable for some interesting interdiction sce-

narios. Specifically in many practical problems there is a fog of uncertainty about the

underlying properties of the network such as the cost to the evader in traversing an edge

(arc, or link) in terms of either resource consumption or detection probability. In ad-

dition there are mismatches in the cost and risk computations between the interdictor

and the evaders (as well as between different evaders), and all agents have an interest

in hiding their actions. For evaders, most least-cost-path interdiction models make op-

timal assumptions about the evader’s knowledge of the interdictor’s strategy, namely,

the choice of interdiction set. In many real-world situations evaders likely fall far short

of the optimum. This paper, therefore, considers the other limit case, which for many

problems is more applicable, when the evaders do not respond to interdictor’s decisions.

This case is particularly useful for problems where the evader is a process on the network

rather than a rational agent.

Various formulations of the network interdiction problem have existed for many
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decades now. The problem likely originated in the study of military supply chains and

interdiction of transportation networks [2, 3]. But in general, the network interdiction

problem applies to wide variety of areas including control of infectious disease [27], and

disruption of terrorist networks [5]. Recent interest in the problem has been revived due

to the threat of smuggling of nuclear materials [6]. In this context interdiction of edges

might consist of the placement of special radiation-sensitive detectors across transporta-

tion links. For the most-studied formulation, that of max-min interdiction described

above [1], it is known that the problem is NP-hard [7, 8] and hard to approximate [9].

4.2 Unreactive Markovian Evader

The formulation of a stochastic model where the evader has limited or no information

about interdiction can be motivated by the following interdiction situation. Suppose

bank robbers (evaders) want to escape from the bank at node s to their safe haven at

node t1 or node t2. The authorities (interdictors) are able to position roadblocks at a few

of the roads on the network between s, t1 and t2. The robbers might not be aware of

the interdiction efforts, or believe that they will be able to move faster than the author-

ities can set up roadblocks. They certainly do not have the time or the computational

resources to identify the global minimum of the least-cost-path problem.

Similar examples are found in cases where the interdictor is able to clandestinely re-

move edges or nodes (e.g. place hidden electronic detectors), or the evader has bounded

rationality or is constrained in strategic choices. An evader may even have no intel-

ligence of any kind and represent a process such as Internet packet traffic that the in-

terdictor wants to monitor. Therefore, our fundamental assumption is that the evader

does not respond to interdiction decisions. This transforms the interdiction problem
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from the problem of increasing the evader’s cost or distance of travel, as in the stan-

dard formulation, into a problem of directly capturing the evader as explicitly defined

below. Additionally, the objective function acquires certain useful computational prop-

erties discussed later.

4.2.1 Evaders

In examples discussed above, much of the challenge in interdiction stems from the un-

predictability of evader motion. Our approach is to use a stochastic evader model to

capture this unpredictability [6, 10]. We assume that an evader is traveling from a source

node s to a target node t on a graph G(N,E) according to a guided random walk defined

by the Markovian transition matrix M; from node i the evader travels on edge (i, j) with

probability Mi j. The transition probabilities can be derived, for example, from the cost

and risk of traversing an edge [10].

Uncertainty in the evader’s source location s is captured through a probability vector

a. For the simplest case of an evader starting known location s, as = 1 and the rest of the

ai’s are 0. In general the probabilities can be distributed arbitrarily to all of the nodes as

long as ∑i∈N ai = 1. Given a, the probability that the evader is at location i after n steps

is the i’th entry in the vector π(n) = aMn

When the target is reached the evader exits the network and therefore, Mt j = 0 for

all outgoing edges from t and also Mtt = 0. The matrix M is assumed to satisfy the

following condition: for every node i in the network either there is a positive probability

of reaching the target after a sufficiently large number of transitions, or the node is a dead

end, namely Mi j = 0 for all j. With these assumptions the Markov chain is absorbing

and the probability that the evader will eventually reach the target is ≤ 1. For equality
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to hold it is sufficient to have the extra conditions that the network is connected and that

for all nodes i , t, ∑ j Mi j = 1 (see [11].)

A more general formulation allows multiple evaders to traverse the network, where

each evader represents a threat scenario or a particular adversarial group. Each evader

k is realized with probability w(k) (∑k w(k) = 1) and is described by a possibly dis-

tinct source distribution a(k), transition matrix M(k), and target node t(k). This gen-

eralization makes it possible to represent any joint probability distribution f (s, t) of

source-target pairs, where each evader is a slice of f at a specific value of t: a(k)|s =

f (s, t(k))/∑s f (s, t(k)) and w(k) = ∑s f (s, t(k)). In this high-level view, the evaders col-

lectively represent a stochastic process connecting pairs of nodes on the network. This

generalization has practical applications to problems of monitoring traffic between any

set of nodes when there is a limit on the number of “sensors”. The underlying network

could be e.g. a transportation system, the Internet, or water distribution pipelines.

4.2.2 Interdictor

The interdictor, similar to the typical formulation, possesses complete knowledge about

the network and evader parameters a and M. Interdiction of an edge at index i, j is

represented by setting ri j = 1 and ri j = 0 if the edge is not interdicted. In general some

edges are more suitable for interdiction than others. To represent this, we let di j be

the interdiction efficiency, which is the probability that interdiction of the edge would

remove an evader who traverses it.

So far we have focused on the interdiction of edges, but interdiction of nodes can be

treated similarly as a special case of edge interdiction in which all the edges leading to

an interdicted node are interdicted simultaneously. For brevity, we will not discuss node
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interdiction further except in the proofs of Sec. 4.3 where we consider both cases.

4.2.3 Objective function

Interdiction of an unreactive evader is the problem of maximizing the probability of

stopping the evader before it reaches the target. Note that the fundamental matrix for

M, using I to denote the identity matrix is

N = I+M+M2 + · · ·= (I−M)−1 , (4.0)

and N gives all of the possible transition sequences between pairs of nodes before the

target is reached. Therefore given the starting probability a, the expected number of

times the evader reaches each node is (using (4.2.3) and linearity of expectation)

aN = a(I−M)−1 . (4.0)

If edge (i, j) has been interdicted (ri j = 1) and the evader traverses it then the evader

will not reach j with probability di j. The probability of the evader reaching j from i

becomes

M̂i j = Mi j−Mi jri jdi j . (4.0)

This defines an interdicted version of the M matrix, the matrix M̂.

The probability that a single evader does not reach the target is found by considering

the t’th entry in the vector E after substituting M̂ for M in Eq. (4.2.3),

J(a,M,r,d) = 1−
(

a [I− (M−M� r�d)]−1
)

t
, (4.0)

where the symbol � means element-wise (Hadamard) multiplication. In the case of

multiple evaders, the objective J is a weighted sum,

J = ∑
k

w(k)J(k) , (4.0)
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where, for evader k,

J(k)(a(k),M(k),r,d) = 1−
(

a(k)
[
I−
(

M(k)−M(k)� r�d
)]−1

)
t(k)

. (4.0)

Equations (4.2.3) and (4.2.3) define the interdiction probability. Hence the Unreac-

tive Markovian Evader interdiction problem (UME) is

argmax
r∈F

J(a,M,r,d) , (4.0)

where ri j represents an interdicted edge chosen from a set F ⊆ 2E of feasible interdiction

strategies. The simplest formulation is the case when interdicting an edge has a unit cost

with a fixed budget B and F are all subsets of the edge set E of size at most B. This

problem can also be written as a mixed integer program as shown in the Appendix.

Computation of the objective function can be achieved with ∼ 2
3 |N|

3 operations for

each evader, where |N| is the number of nodes, because it is dominated by the cost of

Gaussian elimination solve in Eq. (4.2.3). If the matrix M has special structure then it

could be reduced to O(|N|2) [10] or even faster. We will use this evader model in the

simulations, but in general the methods of Secs. 4.3 and 4.4 would work for any model

that satisfies the hypotheses on M and even for non-Markovian evaders as long as it is

possible to compute the equivalent of the objective function in Eq. (4.2.3).

Thus far interdiction was described as the removal of the evader from the network,

and the creation of a sub-stochastic process M̂. However, the mathematical formalism

is open to several alternative interpretations. For example interdiction could be viewed

as redirection of the evader into a special absorbing state - a “jail node”. In this larger

state space the evader even remains Markovian. Since M̂ is just a mathematical device it

is not even necessary for “interdiction” to change the physical traffic on the network. In

particular, in monitoring problems “interdiction” corresponds to labeling of intercepted

traffic as “inspected” - a process that involves no removal or redirection.

76



4.3 Complexity

This section proves technical results about the interdiction problem (4.2.3) including the

equivalence in complexity of node and edge interdiction and the NP-hardness of node

interdiction (and therefore of edge interdiction). Practical algorithms are found in the

next section.

We first state the decision problem for (4.2.3).

Definition 1. UME-Decision.

Instance: A graph G(N,E), interdiction efficiencies 0 ≤ di ≤ 1 for each i ∈ N, budget

B ≥ 0, and real ρ ≥ 0; a set K of evaders, such that for each k ∈ K there is a matrix

M(k) on G, a sources-target pair (a(k), t(k)) and a weight w(k).

Question: Is there a set of (interdicted) nodes Y of size B such that

∑
k∈K

w(k)
(

a(k)
(

I−M̂(k)
)−1

)
t(k)
≤ ρ? (4.0)

The matrix M̂(k) is constructed from M(k) by replacing element M(k)
i j by M(k)

i j (1−di) for

i ∈ Y and each (i, j) corresponding to edges ∈ E leaving i. This sum is the weighted

probability of the evaders reaching their targets. �

The decision problem is stated for node interdiction but the complexity is the same

for edge interdiction, as proved next.

Definition 2. Edge interdiction is polynomially equivalent to node interdiction.

Proof. To reduce edge interdiction to node interdiction, take the graph G(N,E) and

construct G′ by splitting the edges. On each edge (i, j) ∈ E insert a node v to create the

77



edges (i,v),(v, j) and set the node interdiction efficiency dv = di j,di = d j = 0, where di j

is the interdiction efficiency of (i, j) in E.

Conversely, to reduce node interdiction to edge interdiction, construct from G(N,E)

a graph G′ by representing each node v with interdiction efficiency dv by nodes i, j,

joining them with an edge (i, j), and setting di j = dv. Next, change the transition matrix

M of each evader such that all transitions into v now move into i while all departures

from v now occur from j, and Mi j = 1. In particular, if v was an evader’s target node in

G, then j is its target node in G′. � �

Consider now the complexity of node interdiction. One source of hardness in the

UME problem stems from the difficulty of avoiding the case where multiple edges or

nodes are interdicted on the same evader path - a source of inefficiency. This resembles

the Set Cover problem [12], where including an element in two sets is redundant in a

similar way, and this insight motivates the proof.

First we give the definition of the set cover decision problem.

Definition 3. Set Cover. For a collection C of subsets of a finite set X, and a positive

integer β , does C contain a cover of size ≤ β for X? �

Since Set Cover is NP-complete, the idea of the proof is to construct a network

G(N,E) where each subset c ∈ C is represented by a node of G, and each element

xi ∈ X is represented by an evader. The evader xi is then made to traverse all nodes

{c ∈C|xi ∈ c}. The set cover problem is exactly problem of finding B nodes that would

interdict all of the evaders (see Fig. 4.1.)

Theorem 4. The UME problem is NP-hard even if di = h (constant) ∀ nodes i ∈ N.
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Figure 4.1: Illustration of the reduction of Set Cover to UME-Decision. (a) A set
cover problem on elements x1 . . .x6 ∈X with subsets K = {x1,x2},R =
{x1,x3},B = {x3,x4,x5},G = {x2,x4,x5,x6},Y = {x2,x6} contained in
X . (b) The induced interdiction problem with each subset represented
by a node and each element by an evader. Each arrow indicates the
path of a single evader.

Proof. First we note that for a given a subset Y ⊆ N with |Y | ≤ B, we can update M(k)

and compute (1) to verify UME-Decision as a yes-instance. The number of steps is

bounded by O(|K||N|3). Therefore, UME-Decision is in NP.

To show UME-Decision is NP-complete, reduce Set Cover with X ,C to UME-

Decision on a suitable graph G(N,E). It is sufficient to consider just the special case

where all interdiction efficiencies are equal, di = 1. For each c ∈C, create a node c in

N. We consider three cases for elements x ∈ X ; elements that have no covering sets,

elements that have one covering set, and elements that have at least two covering sets.

Consider first all x ∈ X which have at least two covering sets. For each such x create
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an evader as follows. Let O be any ordering of the collection of subsets covering x.

Create in E a Hamiltonian path of |O|−1 edges to join sequentially all the elements of

O, assigning the start, a and end t nodes in agreement with the ordering of O. Construct

an evader transition matrix of size |C|× |C| and give the evader transitions probability

Mi j = 1 iff i, j ∈C and i < j, and = 0 otherwise.

For the case of zero covering sets, that is, where ∃x ∈ X such that x < S for all S ∈C,

represent x by an evader whose source and target are identical: no edges are added to

E and the transition matrix is M = 0. Thus, J in Eq. (4.2.3) is non-zero regardless of

interdiction strategy.

For the case when x has just one covering set, that is, when ∃x ∈ X such that there

is a unique c ∈ C with x ∈ c, represent c as two nodes i and j connected by an edge

exactly as in the case of more than one cover above. After introducing j, add it to the

middle of the path of each evader x if i is in the path of x, that is, if c∈C. It is equivalent

to supposing that C contains another subset exactly like c. This supposition does not

change the answer or the polynomial complexity of the given instance of Set Cover. To

complete the reduction, set B = β , ρ = 0, X = K, w(k) = 1/|X | and di = 1, ∀i ∈ N.

Now assume Set Cover is a yes-instance with a cover Ĉ ⊆C. We set the interdicted

transition matrix M̂(k)
i j = 0 for all (i, j) ∈ E corresponding to c ∈ Ĉ, and all k ∈ K. Since

Ĉ is a cover for X , all the created paths are disconnected, ∑k∈K (a(k)(I−M̂(k))−1)t(k) = 0

and UME-Decision is an yes-instance.

Conversely, assume that UME-Decision is a yes-instance. Let Y be the set of inter-

dicted nodes. For y ∈ Y , there is element y of C. Since all the evaders are disconnected

from their target and each evader represents a element in X , Y ⊆C covers X and |Y | ≤ β .

Hence, Set Cover is a yes-instance. Therefore, UME-Decision is NP-complete. �
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This proof relies on multiple evaders and it remains an open problem to show that

UME is NP-hard with just a single evader. We conjecture that the answer is positive

because the more general problem of interdicting a single unreactive evader having an

arbitrary (non-Markovian) path is NP-hard. This could be proved by creating from a sin-

gle such evader several Markovian evaders such that the evader has an equal probability

of following the path of each of the Markovian evaders in the proof above.

Thus far no consideration was given to the problem where the cost ci j of interdicting

an edge (i, j) is not fixed but rather is a function of the edge. This could be termed the

“budgeted” case as opposed to the “unit cost” case discussed so far. However, the bud-

geted case is NP-hard as could be proved through reduction from the knapsack problem

to a star network with “spokes” corresponding to items.

4.4 An Efficient Interdiction Algorithm

The solution to the UME problem can be efficiently approximated using a greedy al-

gorithm by exploiting submodularity. In this section we prove that the UME problem

is submodular, construct a greedy algorithm, and examine the algorithm’s performance.

We then show how to improve the algorithm’s speed by further exploiting the submod-

ular structure using a “priority” evaluation scheme and “fast initialization”.
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4.4.1 Submodularity of the interdiction problem

In general, a function is called submodular if the rate of increase decreases monotoni-

cally, which is akin to concavity.

Definition 5. A real-valued function on a space S, f : S→ R is submodular [13, Prop.

2.1iii] if for any subsets S1 ⊆ S2 ⊂ S and any x ∈ SrS2 it satisfies

f (S1∪{x})− f (S1)≥ f (S2∪{x})− f (S2) . (4.0)

Definition 6. J(r) is submodular on the set of interdicted edges.

Proof. First, note that it is sufficient to consider a single evader because in Eq. (4.2.3),

J(r) is a convex combination of k evaders [13, Prop. 2.7]. For simplicity of notation,

we drop the superscript k in the rest of the proof.

Let S = {(i, j) ∈ E|ri j = 1} be the interdiction set and let J(S) be the probability

of interdicting the evader using S, and let Q(p) be the probability of the evader taking

a path p to the target. On path p, the probability of interdicting the evader with an

interdiction set S is

P(p|S) = Q(p)

(
1− ∏

(i, j)∈p∩S
(1−di j)

)
. (4.0)

Moreover,

J(S) = ∑
p

P(p|S) . (4.0)

If an edge (u,v) < S is added to the interdiction set S (assuming (u,v) ∈ p), the

probability of interdicting the evader in path p increases by

P(p|S∪{(u,v)})−P(p|S) = Q(p)duv ∏
(i, j)∈p∩S

(1−di j) ,
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which can be viewed as the probability of taking the path p times the probability of

being interdicted at (u,v) but not being interdicted elsewhere along p. If (u,v) ∈ S or

(u,v) < p then adding (u,v) has, of course, no effect: P(p|S∪{(u,v)})−P(p|S) = 0.

Consider now two interdiction sets S1 and S2 such that S1 ⊂ S2. In the case where

(u,v) < S1 and (u,v) ∈ p, we have

P(p|S1∪{(u,v)})−P(p|S1) = Q(p)duv ∏
(i, j)∈p∩S1

(1−di j) , (4.1)

≥ Q(p)duv ∏
(i, j)∈p∩S2

(1−di j) , (4.2)

≥ P(p|S2∪{(u,v)})−P(p|S2) . (4.3)

In the above (4.2) holds because an edge (u′,v′)∈ (S2rS1)∩ p would contribute a factor

of (1−du′v′)≤ 1. The inequality (4.3) becomes an equality iff (u,v) < S2. Overall (4.3)

holds true for any path and becomes an equality when (u,v) ∈ S1. Applying the sum of

Eq. (4.4.1) gives

J(p|S1∪{(u,v)})− J(p|S1)≥ J(p|S2∪{(u,v)})− J(p|S2) , (4.3)

and therefore J(S) is submodular. � �

Note that the proof relies on the fact that the evader does not react to interdic-

tion. If the evader did react then it would no longer be true in general that P(p|S) =

Q(p)
(
1−∏(i, j)∈p∩S (1−di j)

)
above. Instead, the product may show explicit depen-

dence on paths other than p, or interdicted edges that are not on p. Also, when the

evaders are not Markovian the proof is still valid because specifics of evader motion are

contained in the function Q(p).
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4.4.2 Greedy algorithm

Submodularity has a number of important theoretical and algorithmic consequences.

Suppose (as is likely in practice) that the edges are interdicted incrementally such that

the interdiction set Sl ⊇ Sl−1 at every step l. Moreover, suppose at each step, the inter-

diction set Sl is grown by adding the one edge that gives the greatest increase in J. This

defines a greedy algorithm, Alg. 4.

Algorithm 4: Greedy construction of the interdiction set S with budget B for a
graph G(N,E).

S← ∅

while B > 0 do

x∗← ∅

δ ∗←−1

for all x ∈ E rS do

∆(S,x) := J (S∪{x})− J (S)

if ∆(S,x) > δ ∗ then

x∗←{x}

δ ∗← ∆(S,x)

S← S∪ x∗

B← B−1

Output(S)

The computational time is O(B|N|3|E|) for each evader, which is strongly polyno-

mial since |B| ≤ |E|. The linear growth in this bound as a function of the number of

evaders could sometimes be significantly reduced. Suppose one is interested in inter-

dicting flow f (s, t) that has a small number of sources but a larger number of targets.

In the current formulation the cost grows linearly in the number of targets (evaders) but
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is independent of the number of sources. Therefore for this f (s, t) it is advantageous to

reformulate UME by inverting the source-target relationship by deriving a Markov pro-

cess which describes how an evader moves from a given source s to each of the targets.

In this formulation the cost would be independent of the number of targets and grow

linearly in the number of sources.

4.4.3 Solution quality

The quality of the approximation can be bounded as a fraction of the optimal solution

by exploiting the submodularity property [13]. In submodular set functions such as J(S)

there is an interference between the elements of S in the sense that sum of the individual

contributions is greater than the contribution when part of S. Let S∗B be the optimal

interdiction set with a budget B and let Sg
B be the solution with a greedy algorithm.

Consider just the first edge x1 found by the greedy algorithm. By the design of the

greedy algorithm the gain from x1 is greater than the gain for all other edges y, including

any of the edges in the optimal set S∗. It follows that

∆(∅,x1)B≥ ∑
y∈S∗B

∆(∅,y)≥ J(S∗B) . (4.3)

Thus x1 provides a gain greater than the average gain for all the edges in S∗B,

∆(∅,x1)≥
J(S∗B)

B
. (4.3)

A similar argument for the rest of the edges in Sg
B gives the bound,

J(Sg
B)≥

(
1− 1

e

)
J(S∗B) , (4.3)

where e is Euler’s constant [13, p.268]. Hence, the greedy algorithm achieves at least

63% of the optimal solution.
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This performance bound depends on the assumption that the cost of an edge is a con-

stant. Fortunately, good discrete optimization algorithms for submodular functions are

known even for the case where the cost of an element (here, an edge) is variable. These

algorithms are generalizations of the simple greedy algorithm and provide a constant-

factor approximation to the optimum [14, 15]. Moreover, for any particular instance of

the problem one can bound the approximation ratio, and such an “online” bound is often

better than the “offline” a priori bound [16].

4.4.4 Exploiting submodularity with Priority Evaluation

In addition to its theoretical utility, submodularity can be exploited to compute the same

solution much faster using a priority evaluation scheme. The basic greedy algorithm

recomputes the objective function change ∆(Sl,x) for each edge x ∈ E rSl at each step

l. Submodularity, however, implies that the gain ∆(Sl,x) from adding any edge x would

be less than or equal to the gain ∆(Sk,x) computed at any earlier step k < l. Therefore,

if at step l for some edge x′, we find that ∆(Sl,x′) ≥ ∆(Sk,x) for all x and any past step

k ≤ l, then x′ is the optimal edge at step l; there is no need for further computation (as

was suggested in a different context [16].) In other words, one can use stale values of

∆(Sk,x) to prove that x′ is optimal at step l.

As a result, it may not be necessary to compute ∆(Sl,x) for all edges x ∈ E r S at

every iteration. Rather, the computation should prioritize the edges in descending order

of ∆(Sl,x). This “lazy” evaluation algorithm is easily implemented with a priority queue

which stores the gain ∆(Sk,x) and k for each edge where k is the step at which it was

last calculated. (The step information k determines whether the value is stale.)

The priority algorithm (Alg. 5) combines lazy evaluation with the following fast
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initialization step. Unlike in other submodular problems, in UME one can compute

∆(∅,x) simultaneously for all edges x ∈ E because in this initial step, ∆(∅,x) is just the

probability of transition through edge x multiplied by the interdiction efficiency dx, and

the former could be found for all edges in just one operation. For the “non-retreating”

model of Ref. [10] the probability of transition through x = (i, j) is just the expected

number of transitions though x because in that model an evader moves through x at most

once. This expectation is given by the i, j element in a(I−M)−1�M (derived from

Eq. (4.2.3)). The probability is multiplied by the weight of the evader and then by dx:

∆(∅,x) = ∑k

(
a(k)(I−M(k))−1

)
i
M(k)

i j w(k)dx. In addition to these increments, for dis-

connected graphs the objective J(S) also contains the constant term ∑k w(k) (
∑i∈Z(k) ai

)
,

where Z(k) ⊂ N are nodes from which evader k cannot reach his target t(k).

In subsequent steps this formula is no longer valid because interdiction of x may

reduce the probability of motion through other interdicted edges. Fortunately, in many

instances of the problem the initialization is the most expensive step since it involves

computing the cost for all edges in the graph. As a result of the two speedups the

number of cost evaluations could theoretically be linear in the budget and the number of

evaders and independent of the size of the solution space (the number of edges).

The performance gain from priority evaluation can be very significant. In many

computational experiments, the second best edge from the previous step was the best in

the current step, and frequently only a small fraction of the edges had to be recomputed

at each iteration. In order to systematically gauge the improvement in performance, the

algorithm was tested on 50 synthetic interdiction problems. In each case, the underlying

graph was a 100-node Geographical Threshold Graph (GTG), a possible model of sensor

or transportation networks [17], with approximately 1600 directed edges (the threshold

parameter was set at θ = 30). Most of the networks were connected. We set the cost of

87



Algorithm 5: Priority greedy construction of the interdiction set S with budget B

S← ∅

PQ← ∅ {Priority Queue: (value,data,data)}

for all x = (i, j) ∈ E do

∆(x)←{The cost found using fast initialization}

PUSH (PQ,(∆(x),x,0))

s← 0

while B > 0 do

s← s+1

loop

(∆(x),x,n)← POP(PQ)

if n = s then

S← S∪{x}

break

else

∆(x)← J (S∪{x})− J (S)

PUSH (PQ,(∆(x),x,s))

B← B−1

Output(S)

traversing an edge to 1, the interdiction efficiency dx to 0.5, ∀x ∈ E, and the budget to

10. We used two evaders with uniformly distributed source nodes based on the model of

[10] with an equal mixture of λ = 0.1 and λ = 1000. For this instance of the problem the

priority algorithm required an average of 29.9 evaluations of the objective as compared

to 31885.2 in the basic greedy algorithm - a factor of 1067.1 speedup.

The two algorithms find the same solution, but the basic greedy algorithm needs to
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recompute the gain for all edges uninterdicted edges at every iteration, while the priority

algorithm can exploit fast initialization and stale computational values. Consequently,

the former algorithm uses approximately B|E| cost computations, while the latter typi-

cally uses much fewer (Fig. 4.2a).

Simulations show that for the priority algorithm the number of edges did not seem

to affect the number of cost computations (Fig. 4.2b), in agreement with the theoretical

limit. Indeed, the only lower bound for the number of cost computations is B and this

bound is tight (consider a graph with B evaders each of which has a distinct target

separated from each evader’s source by exactly one edge of sufficiently small cost). The

priority algorithm performance gains were also observed in other example networks.3

The priority algorithm surpasses a benchmark solution of the corresponding mixed

integer program (See Appendix) using a MIP solver running CPLEX (version 10.1) in

consistency, time, and space. For example, in runs on 100-node GTG networks with

4 evaders and a budget of 10, the priority algorithm terminates in 1 to 20 seconds,

while CPLEX terminated in times ranging from under 1 second to 9.75 hours (the high

variance in CPLEX run times, even on small problems, made systematic comparison

difficult.) The difference in solution optimality was zero in the majority of runs. In the

hardest problem we found (in terms of its CPLEX computational time - 9.75 hours), the

priority algorithm found a solution at 75% of the optimum in less than 10 seconds.

For our implementation, memory usage in the priority algorithm never exceeded

300MiB. Further improvement could be made by re-implementing the priority algorithm

so that it would require only order O(|E|) to store both the priority queue and the vectors

of Eq. (4.2.3). In contrast, the implementation in CPLEX repeatedly used over 1GiB for

3Specifically, the simulations were a two evader problem on a grid-like networks consisting of a lattice
(whose dimensions were grown from 8-by-8 to 16-by-16) with random edges added at every node. The
number of edges in the networks grew from approximately 380 to 1530 but there was no increasing trend
in the number of cost evaluations.
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Figure 4.2: Comparison between the basic greedy (blue circles) and the priority
greedy algorithms (red diamonds) for the number of cost evaluations
as a function of (a) budget, and (b) number of edges. In (a) each point
is the average of 50 network interdiction problems. The average co-
efficient of variation (the ratio of the standard deviation to the mean)
is 0.10 for basic greedy and 0.15 for the priority greedy. Notice the
almost perfectly linear trends as a function of budget (shown here on a
log-log scale, the power ≈ 1.0 in both.) In (b), the budget was fixed at
10 and the number of edges was increased by decreasing the connec-
tivity threshold parameter from θ = 50 to θ = 20 to represent, e.g.,
increasingly dense transportation networks.

the search tree. As was suggested from the complexity proof, in runs where the number

of evaders was increased from 2 to 4 the computational time for an exact solution grew

rapidly.

4.5 Outlook

The submodularity property of the UME problem provides a rich source for algorithmic

improvement. In particular, there is room for more efficient approximation schemes and

practical value in their invention. Simultaneously, it would be interesting to classify
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the UME problem into a known approximability class. It would also be valuable to

investigate various trade-offs in the interdiction problem, such as the trade-off between

quality and quantity of interdiction devices.

As well, to our knowledge little is known about the accuracy of the assumptions of

the unreactive Markovian model or of the standard max-min model in various applica-

tions. The detailed nature of any real instance of network interdiction would determine

which of the two formulations is more appropriate.
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Postscript

After the original paper appeared in print the authors became aware of a prior proposal

to exploit submodularity to monitor Markovian network traffic (Berman et al. [18]).

Even with that, the current work represents a clear advance in terms of the underlying

model and the priority algorithm, that far outperforms the running time of the basic

greedy algorithm used in [18].
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APPENDIX

4.A Mixed integer program for UME

In the unreactive Markovian evader interdiction (UME) problem an evader k ∈ K is

sampled from a source distribution a(k), and moves to a sink t(k) with a path specified

by the matrix M(k). This matrix is the Markov transition matrix with zeros in the row

of the absorbing state (sink). The probability that the evader arrives at t(k) is (a(k)(I−

M(k))−1)t(k) and is 1 without any interdiction (removal of edges).
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Notation summary

G(N,E): simple graph with node and edge sets N and E, respectively.

K: the set of evaders.

w(k): probability that the evader k occurs.

a(k)
i : probability that node i is the source node of evader k.

t(k): the sink of evader k.

M(k): the modified transition matrix for the evader k.

di j: the conditional probability that interdiction of edge (i, j) would remove an evader

who traverses it.

B: the interdiction budget.

π
(k)
i : decision variable on conditional probability of node evader k traversing node i.

ri j: interdiction decision variable, 1 if edge (i, j) is interdicted and 0 otherwise.

Definition 7. Unreactive Markovian Evader interdiction (UME) problem

min
r

H(r) = ∑
k∈K

w(k)h(k)(r) ,

s.t. ∑
(i, j)∈E

ri j = B ,

ri j ∈ {0,1}, ∀(i, j) ∈ E,

where

h(k)(r) = min
π

πt(k) ,

s.t. π
(k)
i − ∑

( j,i)∈E
(M(k)

ji −M(k)
ji d jir ji)π

(k)
j = a(k)

i , ∀i ∈ N , (4.0)

π
(k)
i ≥ 0, ∀i ∈ N. (4.1)
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The constraint (4.0) is nonlinear. We can replace this with a set of linear constraints,

and the evader problem becomes

h(k)(r) = min
π,θ

πt(k) , (4.2a)

s.t. π
(k)
i − ∑

( j,i)∈E
θ

(k)
ji = a(k)

i , ∀i ∈ N , (4.2b)

θ
(k)
ji ≥M(k)

ji π
(k)
j −M(k)

ji d jir ji, ∀( j, i) ∈ E , (4.2c)

θ
(k)
ji ≥M(k)

ji (1−d ji)π
(k)
j , ∀( j, i) ∈ E , (4.2d)

θ
(k)
i j ≥ 0, ∀(i, j) ∈ E , (4.2e)

π
(k)
i ≥ 0, ∀i ∈ N . (4.2f)

(4.2g)

If we set ri j = 0, the constraint (4.2c) is dominating (4.2d), and θi j will take value

M(k)
i j π

(k)
i at optimal because of the minimization. If we set ri j = 1, the constraint (4.2d)

is dominating since π
(k)
j ≤ 1. Although formulation (4.2) has an additional variable θ , at

the optimum the two formulations are equivalent because π and r have the same values.
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CHAPTER 5

DESIGNING NETWORKS FOR CASCADE RESILIENCE

Chapter Abstract Complex socio-economic networks such as transportation net-

works, information systems and even underground organizations are often designed for

resilience - to be able to function even if some of the nodes (depots, routers, operatives

etc.) are compromised by a human or natural adversary. In many cases the adversary

threatens to cause a cascade where the failure of a single node leads to far-reaching

domino effect where some of the adjacent nodes are lost as well, followed by their

neighbors and so on. Such cascades motivate the search for mechanisms and network

designs that would increase the networks’ cascade resilience while maintaining effi-

ciency. This work introduces a mathematical model in which networks are designed by

solving an optimization problem. The results indicate that a network consisting of mul-

tiple star-like cells maximizes a combination of cascade resilience and efficiency. Also,

perhaps surprisingly it was found that in many network designs and parameter values,

edge density of the optimal network topology does not monotonically decrease when

cascade risk increases, but may increase again when cascade risk is high. This implies

that certain networks ought not to be modified for cascade resilience, since the cost in

efficiency is too high. Understanding cascade resilience and its structural phase tran-

sitions will help identify vulnerabilities in violent underground groups, but also design

more resilient networks in many diverse application areas.

Keywords: networks, resilience, cascade, contagion, epidemics on networks, terror-

ism, terrorist networks
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5.1 Introduction

Cascades on networks have been a major theme in the field of network research. For

example, in a power grid the loss of a single transmission or generator node may cause

nearby nodes to be overloaded, becoming disconnected or damaged. This failures might

propagate widely through the network, leading to widespread blackouts and large eco-

nomic damage. Rebuilding the network might involve both repair of hardware and com-

plex start-up procedures that take considerable time. These cascade phenomena are also

found in other domains such as disease control, computer networks, financial markets

and social systems. A particularly interesting case is clandestine social networks, such

as terrorist networks or guerrillas operating in a hostile environment. If one of the nodes

(i.e. operatives) is captured by law enforcement agencies, it may betray all the nodes

connected to it leading to their likely capture.

The focus of this work is to investigate a novel problem in network research - how

to build cascade-resilient networks. To date much research has explored the extent of

cascades and the nature of their propagation, specifically looking at important classes of

networks [1, 2, 3, 4, 5]. Here the focus is different in that the topology is not fixed be-

cause in many networks cascade resilience is a design criterion. Here “resilience” refers

to properties of the network that reduce the damage caused by cascades (also called

“contagions” or “epidemics”). The objective here is to identify topological features that

can endow networks with high contagion resilience. It is hoped that ultimately it would

be possible to identify a general prescription for building cascade-resilient networks for

many different domains. Finding such features would be useful not only in networks that

are being designed de novo, but also in a much broader class of networks where some

changes could be made to the topology even if complete redesign is infeasible. This in-

clude power grids (which could be locally upgraded), social networks facing epidemics
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(through isolation of certain nodes) and others.

Because the relative importance of efficiency and resilience depends on operating

conditions, the optimal design is expected to be not a single pattern, but multiple differ-

ent patterns, with possible sharp transitions between them. In research of terrorism and

guerrilla movements, a classic pattern is the tree-of-cliques cellular hierarchy (Fig.5.1)

[6, 7] (see also research on crime networks in industry [8], and drugs [9]). The ad-

vantages of networks structured around independent cells are well-recognized by the

terrorist groups themselves, and have already been explored by researchers [10, 11]. In

this application area, the current research promises to provide better understanding of

the structure of terrorist networks and in particular, it will help predict which networks

would be very difficult to interdict.

However, it is clear that the “optimal” topology depends on conditions such as the

risk of cascades and the purpose of the network (e.g. organize violence vs. transport

electric power), whose effect is poorly-understood.

The model introduced in this paper addresses this problem in a simplified context

of graph theory, as follows. It is clear that in many networks it is possible to increase

cascade resilience by many means, not only through their topology. For instance, in

controlling respiratory diseases, it is possible to ask people to wear face mask reducing

the spread of contagions. Also, in clandestine social networks one sees additional types

of nodes (“dead drops” or “couriers”) whose purpose is to prevent cascades. Those types

of defenses are interesting both in practice and in theory, but they involve heterogeneous

graphs (with multiple types of nodes and edges) whose models are both more complex

and application-specific. Therefore here the focus is on simple graphs as models of

networks in the view that the conclusions derived from such models would also be ap-

plicable to more complex situations. In the remainder, the words “network” and “graph”
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Figure 5.1: The French World-War II underground network Francs-tireurs Parti-

sans (FTP). Its basic organizational unit was the combat group (a).
This was divided into two “teams” of three fighters, where leader L1

was in overall command and in command of team 1. His lieutenant,
L2, led team 2 and assumed overall command if L1 was captured. The
small degree of the nodes ensured that the capture of any one node
did not cause a significant fraction of the organization becoming cap-
tured as well. Such groups were organized into a hierarchy (b) where
3 groups made a “section”, 3 of which made a “company”, and finally
3 companies made a “battalion”. In the battalion figure, a leaf node
corresponds to the leader of a group (subordinates not shown).

G will be used to mean the same object: a tuple (V,E), where V is a set of “nodes” and

E is a set of “edges”, where each edge is an unordered pair of nodes.

Even on simple graphs, designing resilience to cascades is not a simple problem to

formulate because in practical network designs it is necessary to balance resilience with

suitably-defined performance/efficiency. Indeed, intuitively the most cascade-resilient

network is the network with no edges (no cascades can propagate), but it is also the least

useful kind of network. Therefore, searching for the most resilient design is not the right

objective, neither in practice nor in theory. Rather the true objective is to maximize a

certain combination of resilience and efficiency, which is termed “fitness”. It is expected
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that typically maximizing resilience and maximizing efficiency will be in opposition,

requiring tradeoffs. Just as disconnected networks are resilient and inefficient, highly-

efficient networks such as densely-connected graphs are likely to have low resilience

[12].

Such a trade-off suggests formulating the question as one of mixed-objective opti-

mization, where the solution space is a space of simple graphs possibly with a fixed

number nodes. In this formulation one must overcome two keys problems. First, this

is a very large search space even if the graph has just a few dozen nodes or edges.

Secondly, it is important to be able to smoothly measure efficiency in both connected

and disconnected topologies but many familiar graph functions are only suitable for

only connected topologies. Both of those issues are addressed here: to reduce the search

space the graphs are constructed using parametrized generating programs, and efficiency

is measured by a metric termed “distance-attenuated reach”.

Research on social networks indicates that resilience and efficiency might be just

two of several design criteria that also include e.g. “information-processing require-

ments”, that impose additional constraints on network designs [8]. In the original con-

text “information-processing” refers to the need to have ties between individuals in-

volved in a particular task, when the task has high complexity. Each individual might

have a unique set of expertise into which all the other agents must tap directly. Gener-

alizing from sociology, such “functional constraints” might considerably limit the flex-

ibility in constructing resilient and efficient networks. For example, in the context of

terrorism, this constraint significantly decreased the quality of attacks that could be

successfully carried out in the post 9/11 security environment [13]. Such functional

constraints could be addressed by looking at a narrow set of models of networks which

already incorporate such constraints. The specific models to be examined are motivated
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by analytical expediency, but in general one may want to consider a particular design

palette dictated by the application at hand. The current objective is to identify which el-

ements might be useful for increasing the fitness of networks, and thus suggest elements

that are useful to have in the palette.

There is a very extensive literature on both cascades and resilience. For instance,

a number of investigations considered resilience to removal of nodes or edges. It was

realized that certain types of scale-free networks (but not others) are sensitive to tar-

geted node removal [14, 15, 16, 17, 18, 19]. Researchers also looked at different models

of contagion [1, 20], as well as non-topological mechanisms for increasing resilience

[21, 22]. The general area of resilience has attracted a lot of research in the area of secret

societies such as terrorist networks [10, 12, 23, 24, 9, 25, 26, 11]. In fact many secret so-

cieties are benign, including non-governmental organizations and dissident movements

operating in hostile political environments. Related problems have also been studied in

epidemiology, where the question focused on immunization strategies (e.g. [27]) but

apparently not as a question of optimal network design. Game-theoretic methods have

recently been applied to the resilience-efficiency trade-off in terrorist network design

[26, 11].

The main contribution of this work is to systematically attack the cascade resilience

problem of networks. Also novel is a metric for defining efficiency of networks, which

enables studying disconnected topologies in detail.

The paper is organized in the following way: section 2 formalizes the problem math-

ematically and section 3 introduces various classes of networks. The results are exhib-

ited in section 4, and discussed in section 5. Mathematical details are found in the

Appendix.
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5.2 Formal Model

The novel approach here is to represent the resilience-efficiency trade-off above as an

optimization problem where the decision variable is the topology G of a simple graph

and the objective function is a metric overall performance termed “fitness”, F(G). The

graph G is chosen from a set G, and fitness combines resilience R(G) and efficiency

W (G), through a weight parameter r:

max
G∈G

rR(G)+(1− r)W (G)︸                        ︷︷                        ︸
F(G)

 . (5.0)

The set G is here called the “design” of the network. This design could be quite narrow

(e.g. an Erdos-Renyi random graph on n nodes [28]) or very broad (e.g. any n-node

graph). Both of the functions R(G) and W (G) (W stands for “work”) will have range

⊆ [0,1], to make them independent of network size. The parameter r ∈ [0,1] depends

on the problem being studied. Much of the discussion below will be about the point

r = 0.5 in which the two are weighed equally. On a practical level, r could represent

the cost of restoring the network after a cascade - is it light or catastrophic. In practice

r is determined by considering the strategic purpose of the network being designed, and

making an estimate of the best balance point between the two objectives.

The next subsection introduces two simple measures of R(G) and W (G) that should

be applicable to a range of different scenarios. These measures are necessary to make

progress, but of course the general multi-objective formulation (5.2) has much broader

applicability. Another issue to be addressed shortly is defining a suitable search space

of graphs G (see subsec. 5.3).
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5.2.1 Measuring Resilience

In order to define R(G) one needs to provide (a) a realistic model of contagions, and

(b) a metric of contagion resilience relevant to that model. While research on graph

theory has led to the development of a variety of metrics of robustness or resilience [7],

here, unlike in many other studies the interest is in resilience to cascades not to e.g.

disconnection.

One particularly important class of cascades are those that start at a single node then

spread probabilistically to neighboring nodes possibly reaching a large fraction of the

network. Under this model, a very natural definition of resilience is the expected size

of the surviving network. To make the definition neutral with respect to the size of the

original network, the quantity is normalized:

R(G) = 1− 1
n−1

E[extent of a cascade] . (5.0)

For simplicity, assume that cascades start at all nodes with uniform probability. It would

be easy to extend this to cases where factors such as graph topology, node degree and

even node type (for heterogeneous graphs) play a role. Note that the definition considers

the case where cascades spread beyond the immediate neighbors of the starting node,

since this possibility is important in practice.

A simple model of a contagion is the following “SIR” model [29]: each node in the

graph can be in one of three states “susceptible”, “infected” and “removed” designated

S, I and R respectively (these names are borrowed from epidemiology). Time is assumed

to move in uniform discrete steps. A node in S state at time t stays in this state, unless

a neighbor “infects” the node, causing it to move to state I at time t +1. Specifically, a

node in state S at time t has a node-independent probability τ of turning to I state at time

t + 1 if an adjacent node is at state I at time t. Finally, a node in I state at time t would
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always become R at time t +1. Once in state R, a node would remain there for all future

times. In general the rate of transition I → R could take more than one time step but

adding this effect would mostly serve to increase the probability of transmission [29],

which is already parametrized by τ .

5.2.2 Measuring Efficiency

The efficiency of a network is of course completely dependent on its ultimate function.

Ideally, the efficiency metric would (a) be general enough for a variety problems, (b)

be suitable for both connected, weakly-connected and disconnected networks and (c)

computationally and analytically simple. Arguably for many applications the distance

between pairs of nodes in the network is the most important determinant of the net-

work’s efficiency. This idea motivates the following “distance-attenuated reach” metric

of efficiency, which gives the average neighborhood size of each node, corrected by the

distance to the nodes in this neighborhood. Namely, for all nodes u ∈ V , weigh each

v ∈V r{u} by the inverse of its distance to u:

W (G) =
1

n(n−1) ∑
u∈V

∑
v∈Vr{u}

1
d(u,v)g , (5.0)

where g > 0 is a parameter and normalization by n(n−1) ensures that 0 ≤W (G) ≤ 1.

As usual, for any node v disconnected from u, set 1
d(u,v)g = 0. An equivalent formula is

the following: if Vu,d is the set of nodes around u at distance d from u (d goes from 1 to

∞), then W (G) = 1
n(n−1) ∑u∈V ∑

∞
d=1

|Vu,d |
dg . Thus, if the network has short paths, then the

metric would approach 1.0 because Vu,d would be large for small d, and if it has long

paths or is disconnected, then Vu,d would be small for small d. (One may even generalize

this metric to replace dg with dg

dg+D for some D > 0 to take into account the possibility of

connecting to nodes through a costly alternative route that bypasses the given network.)
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The parameter g could be termed “connectivity attenuation“ of the network because it

represents the rate at which distance decreases the connectivity between nodes. In some

problems (such as the Internet) the presence of v on the same connected component as u

is completely sufficient for providing the services of v to u (such as serving documents),

implying that g→ 0. In other problems (such as trust networks) one can trust only one’s

friends and much less their friends, corresponding to attenuation g� 1. Attenuation

is expected to have a significant effect on the optimization problem because it is hard

to build resilient networks when the attenuation is rapid because to decrease cascade

risk one cannot reduce the density of edges, as such a reduction would radically reduce

efficiency W (G).

The above definitions of efficiency and resilience provide the following intuition

about the optimal design of a network. Since edges increase efficiency of the graph, as

the probability of cascades decreases (τ → 0) the optimal network would grow more

dense in order to reduce the average distance on the network. However, since cascades

propagate through edges, as τ → 1, the optimal networks would become more sparse

in order to maximize resilience at the expense of efficiency. As would be shown in the

results section, this intuition is often incorrect.

In general, the current modeling approach has close parallels in the work of Lin-

delauf et al. on terrorist networks [26, 11]. Like here, they consider two optimization

criteria: “secrecy” and “information”, corresponding to resilience and efficiency. Simi-

lar to this paper, their secrecy metric is based on the principle that the capture of a node

will lead to the loss of their immediate neighbors, with some probability. The issue of

cascades is not considered, presumably to achieve analytic tractability. Similar to here,

the metric of information is defined through distances between pairs of nodes, but they

take the inverse of the average distance (giving 0 when the network is disconnected).
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Most different is the interesting application of game theory to find the optimal network.

Their network is the Nash bargaining solution involving a “secrecy player” and an “in-

formation player”. This could be viewed as a type of multi-objective optimization, and

is conceptually similar to the current approach if one sets r to 0.5. Their work is distin-

guished in that they propose a rich set of metrics for secrecy corresponding to different

adversarial scenarios and derive a rich set of analytic results, whereas here just one met-

ric is used and the main tool is simulation (with some analytic results). The current work

is also related to [30], who explored the interesting question of cascades due to overload

of node capacities, but the results are suspect since local search heuristics were applied

to search for the optimum.

5.3 Network Designs

The optimization problem above faces the difficult obstacle of a large solution space.

For general graphs on say n nodes, the set of possible solutions to the above problem

is exponential in n as n→ ∞. Therefore, any practical approach must restrict the space

to a small subset. Moreover, given a set of highly-rated networks (eg. top 1%), it

may be challenging to characterize them - to identify what features give those particular

networks their desirable properties.

5.3.1 Solution Approach

In order to solve those two problems, this work considers what is arguably the most

important subset of the search space. Namely, the focus is on the set of all graphs on

n nodes which can be constructed using a number of simple models termed “network
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designs”. Each model contains parameters which specify how the network is to be

generated, where each setting of the parameters is termed “configuration”. Thus, instead

of searching through the space of graphs, the search is through the set of programs

generating graphs from a model, or more concretely, the search is through the set of

parameters that control those programs. A graph-generating program is an analog of

instructions or protocols by which real networks are constructed. Practical limitations

prevent those instructions from being complex, and hence the set of graphs constructed

by such a program is the more relevant search space for practical applications, than e.g.

the set of all graphs on n nodes.

The optimization process is similar to evolution where selection occurs on the phe-

notype of organisms - here: graphs - but the organisms are largely specified by their

genotype - here: the designs and their configuration parameters. In other words, each

design D has configurations CD
1 ,CD

2 , . . . . In experiments each configuration CD
i is in-

putted to a program that generates a sample of networks, whose average performance

provides an estimate of the fitness of CD
i (see Appendix, sec. 5.C for details).

As to the characterization problem, given that one would know how the networks

were generated, one can more easily characterize the optimal configuration simply by

looking at the parameter values of the programs that generated them. Implicitly, this

procedure assumes that for a given set of parameter values all of the models/programs

produce similar networks, as far as efficiency and resilience are concerned. Hence, the

words “network” and “configuration” will be used interchangeably, even though the

former refers to a single graph, while the latter to a class graphs generated using the

same process.
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5.3.2 Network Designs

A variety of graph generating models have been proposed to describe empirical net-

works: Erdos-Renyi (ER) [31], small world [32], preferential attachment [33], and many

others. However, the models recreate networks whose construction principles are quite

different from what is needed in cascade-resilient networks. In particular, many mod-

els produce graphs with a relatively large number of high degree nodes - a feature that

strongly promotes cascades [2] and under certain conditions even facilitates epidemics

that sweep most of the nodes in the network [5]. While in some applications, such as sci-

entific collaboration networks, cascades are desirable because they spread knowledge,

the current investigation explores cascade-retarding networks.

Fortunately, a good source of suitable networks is found in studies of clandestine

networks. It is known that terrorist networks are often partitioned into cells which oper-

ate largely independently of each other. Moreover, the leadership of the terrorist group

is often not even in direct contact with the cells, instead providing strategic guidance

through public forums (see e.g.[34, 35]). These ideas of decentralization are of course

found in other applications such as the electronic communication networks and organi-

zational design theory.

Let us then consider networks on n nodes constructed through 6 simple designs,

chosen both based on empirical findings as well as the possibility of rigorous analysis

in some cases (see Appendix, sec. 5.D). These designs provide both a mathematical

simplification of the network optimization problem and also structural motifs that could

be incorporated in networks, where it is desired to achieve higher cascade resilience.

Three of the designs are based on identical “cells” where each cell is either a clique (a

complete graph), a star (with a central node called “leader”) or a cycle (nodes connected
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in a ring). Each of these have a single parameter, k - the number of nodes in the cell. Let

us also consider n-node graphs consisting of randomly-connected cliques (sometimes

termed “cavemen”), randomly-connected stars, in both cases according to probability

p . Consider also the simpler and well-studied Erdos-Renyi (ER) random graph with

probability p (see Fig. 5.2). Of course, the six designs hardly exhaust the range of

structures found in real networks, and future research ought to consider other designs in

more detail.

Armed with these designs, the computation below will determine which of them is

optimal (i.e. how to build the cascade-resilience network), as well as how the optimal

design should be configured (e.g. how large should each cell be). The networks pro-

duced by different configurations of a single design could be quite different from each

other. For instance, the cellular designs could be configured to create networks of multi-

ple disconnected components1, as well as the more extreme networks without any edges

or with all nodes in the same component. Some of the designs are expected to perform

better since they generalize simpler designs: the connected stars design includes both

the ER design (by setting k = 1) as well as the stars design (by setting p = 0). Similarly,

connected cliques includes both the ER graph (by setting k = 1) as well as the cliques

graph (by setting p = 0). Note also that some designs have structural limitation so that

possibly none of their configurations can achieve R(G) = 1 or W (G) = 1. For example,

the stars design cannot achieve W (G) = 1 for any positive attenuation exponent. As we

shall see, this will effect its optimal configuration for extreme values of the parameters.

It is clear that the above palette of designs is far too short to provide immediate

value to all of the application areas where cascade resilience is desired. The objective

1It has been argued that disconnected graphs are not realistic as models for many applications, but
several reasons suggest otherwise. First, a variety of networks are only connected in the topological
sense, and in fact, a very small number of edges act as bridges between parts of the network. Second, in
many networks certain edges are highly resilient to cascade propagation, or could be made to be. Thus
the disconnected network provides a simplified model of networks containing regular and resilient edges.
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(a) cliques (b) stars (c) cycles

(d) connected cliques (e) connected stars (f) Erdos-Renyi (ER)

Figure 5.2: Illustration of the 6 designs.

here is to propose an approach which could be applied to different domains, as well as

begin constructing a theory to address cascade resilience. It should also be noted that

the “optimal design” is likely to be a function of exogenous parameters such as cascade

risk, τ , weight of resilience, r, as well the application area: functional constraints which

may make some of the designs unsuitable.

A particularly important problem is understanding the structure of terrorist networks.

These networks are prototypical examples of networks that are maximized to resilience -

their adversary is various government agencies, and efficiency - to be able to recruit and

to carry out violence. Unfortunately, it is hard to obtain detailed data on their structure,

with the notable exception of the 9/11 network [36] and some historic underground

groups, such as FTP illustrated in the introduction. For the FTP network, a “battalion”

(228 nodes, 462 edges) was constructed based on the account in [6]. Although both the

FTP fighters and the 9/11 terrorists are secret societies, the author does not propose any
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moral equivalence between their methods or objectives.

5.4 Results

Having completely specified the optimization problem in the last section, the current

shows the optimal solutions. The optimum depends of course on the parameters τ , r

and g representing contagion risk, the importance of resilience as opposed to efficiency,

and the attenuation of the network, respectively. Together they create what is perhaps a

surprisingly rich picture of optimal networks, but one that can be completely understood

with intuition.

5.4.1 Optimal Network

The first set of experiments explores the effect of contagion risk (τ) while keeping g = 1.

In each setting of τ , the optimal configuration of each design was determined by varying

parameters such as cell size. Consider first the fitness of the designs at their optimal

configuration(Fig. 5.3). A basic qualitative observation is that within each design, as

τ increases, the fitness decreases - one cannot win when fighting cascades, only delay.

This monotonicity could be proved in general (see Appendix, sec. 5.B). It can be seen

that the connected stars design is superior to all others in fitness(Fig. 5.3) but the simpler

stars design is almost as fit. This suggests that the connections between cells brings

additional fitness only at extreme ranges of τ .

Consider now the empirical networks: 9/11 and FTP. It is interesting that the 9/11

network is quite successful for low values of τ (< 0.2), but then it rapidly deteriorates.

This is due to a rapid increase in the extent of cascades - rapid decline in resilience. This
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Figure 5.3: Fitness of the optimal configuration for various designs, and for the
9/11 and FTP networks. r = 0.49, g = 1.

onset of rapid decline suggests that in some types of networks, the network might be

initially hard to defeat, but there is a point after which efforts against it start to pay off. If

τ is representative of the security environment, then one can say that the 9/11 is relatively

ill-adapted to more rigorous security measures implemented after the attacks. Indeed, it

is likely that the 9/11 attacks would have been thwarted under the current regime since

one of the nodes was captured before 9/11. In contrast, the cellular tree hierarchy of the

FTP network is more suitable for intermediate range of cascade risk τ , but the average

distances in it are too long to provide high efficiency. Therefore, its performance is

comparatively poor in very low and very high ranges of τ . Other networks, such as

the ubiquitous scale-free networks found in e.g. scientific collaborations and friendship
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relationships [28] are not discussed here, but it is clear that because high-degree hubs

are found in these networks, such networks would be extremely vulnerable to cascades

once τ is slightly larger than 0. Of course, their organizing principle is not based on

retarding cascades.

In certain applications it is possible to invest in reducing the cascade propagation

probability, τ (e.g. using nomes de guerre in a secret society). Then the curves in

Fig. 5.3 could also be viewed as expressing the value of efforts to reduce cascades by

reducing τ . If the slope is steep then the gains are large. It is important to remember that

the fitness curves indicate the fitness of the optimal configuration of each design, rather

than a static network (except for FTP and 9/11 series). If however the configuration was

made fixed then the fitness decrease would be even steeper as τ increased since changing

the configuration can mitigate some of the decrease.

The fitness of an optimal network is a continuous function of the parameter r, and so

the counterpart of Fig. 5.3 but for r = 0.51 is almost indistinguishable (see Appendix,

sec. 5.A for justification). In contrast resilience, efficiency and other properties of the

optimum may experience discontinuous “phase transitions” as r is changed. For ex-

ample, in the cliques design a transition occurs at r = 0.5 and cascade risk (τ � 0).

Below r < 0.5 the optimal configuration maximizes efficiency, whereas for r > 0.5 it

maximizes resilience (Fig. 5.4,5.5, 5.13).

Intuition suggested that the networks grow more sparse as contagion risk grows.

Instead, the results were surprising because the trend was non-monotonic (Fig. 5.6).

Unexpectedly, for τ � 0 and r < 0.5 some network designs (e.g. cliques, connected

cliques, connected stars) became denser, instead of sparser, and for them the most sparse

networks were formed in the intermediate values of τ . At intermediate τ values the

optimum achieves both relatively high resilience and high efficiency. At higher τ values,
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Figure 5.4: Resilience of the optimal design.
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Figure 5.5: Efficiency of the optimal design.

when r < 0.5 it pays to sacrifice resilience because fitness is increased when efficiency

is made larger through an equal or lesser sacrifice in resilience. The transition does not

occur in the stars design at r = 0.5 because with stars it is relatively harder to increase

efficiency.
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Figure 5.6: Average degree in the optimal configuration of each design.

5.4.2 Effect of attenuation

Various combinations of the parameters have interesting effects on the fitness, as shown

on Fig. 5.7. Comparing fitness for attenuation g = 0.1 against g = 10 notice that decreas-
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Figure 5.7: Fitness of the optimal configuration in the stars design for various
values of g, τ and r.

ing g improves the fitness of the optimal configurations, as expected. Furthermore when

g is small, it is easy to find highly-optimal configuration because the networks could be

made sparse - improving cascade-resilience without significantly reducing efficiency.
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In contrast, when attenuation g is large, efficiency cannot be achieved and the optimal

configuration of the stars design is to have cells of size 1 maximizing resilience. It is

perhaps surprising that for smaller g, high fitness is most difficult to achieve when effi-

ciency and resilience are approximately equally weighted (i.e. r is near 0.5), especially

when τ is near 1.0.

The attenuation g has also interesting effects on the relative merits of various designs

(Fig. 5.8). For example, the cycle design becomes competitive with stars when g = 0.1:

the relatively large distance in cycles help stop cascades and do not decrease efficiency

very much since g is low. It becomes the best design for τ = 0.55 and larger.
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Figure 5.8: Fitness of the optimal configuration for each design when g = 0.1.
Data is for r = 0.49.
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5.5 Discussion

The success of the stars design could be analyzed more qualitatively. The fitness func-

tion combines resilience R(G) which decreases when the graph becomes more strongly

connected, and efficiency W (G) which decreases when the graph becomes more sparse.

The optimality of the star-based designs is due to a good trade-off between R and W : the

central node in each cell (its “leader”) provides a good firewall against cascades because

in each cell most pairs are separated by distance of 2, but this separation reduces effi-

ciency only modestly. In the cliques design the separation is 1 (too short for resilience),

and in the cycles design it is too long (∼a quarter of cell size, which is too long for

efficiency).

Mathematically, the existence of a non-trivial solution is due to the different func-

tional relationships. To a first-order approximation, efficiency decreases inversely with

average distance (∼ 1
avg distanceg ) while cascade propagation probability decreases

exponentially (∼ τavg distance, for τ < 1 assuming a bounded number of alternative

paths). For example, for the star design R = 1− τ2 and W = 2−g as n = k→ ∞. There-

fore, the optimal network’s structure exploits the exponential decrease in cascades with-

out sacrificing too much efficiency. In the range τ ∈ [0.2,0.7] and r ≈ 0.5, an average

distance of ≈ 2, as in the star graph, might be optimal.

Structuring the network into communities might help increase in fitness. Notice that

the connected stars design mostly outpeforms the random graph G(n, p) even though it

includes it (by setting k = 1). A similar effect occurs in connected cliques vs. cliques -

why? Perhaps to achieve high performance it is helpful to build the graph around “com-

munities” - sets of densely-connected nodes. Indeed the optimal configuration away

from τ → 0 is precisely based on k > 1 (see Appendix, sec. 5.E). The effect of com-
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munity structure on cascades has been explored extensively, and the new result is that

that communities achieve resilience while maintaining efficiency. For more details on

configuration parameters see Appendix, sec. 5.E. For sensitivity analysis see Appendix,

sec. 5.F.

The finding that under high cascade risk the optimal network is dense is interesting,

because our expectation was that the optimal network would be sparse and tree-like.

Instead, it was found that at high τ values the optimal networks have low fitness val-

ues (Fig. 5.3) and for r < 0.5 are not optimized for resilience at all. This may have

interesting parallels in a variety of application areas. Consider for instance non-violent

social movements, like the movement that brought about the independence of colonial

India, or those involved in the electoral revolutions in Serbia, Ukraine and Georgia. The

organizers of those movements intentionally chose to organize openly rather to form an

underground. This openness greatly facilitated the movement’s growth, although it put

at risk the individuals who participated. The parallel in the model is to the sacrifice of

resilience to cascades in order to gain higher efficiency. This work suggests that such a

sacrifice is worth making even when cascade risk is high as long as efficiency is more

valued or replacing nodes is easy (r < 0.5).

5.6 Conclusions and Future Work

This work has explored the problem of designing networks for cascade resilience. The

main contributions are:

• A general definition of the problem as a multi-objective optimization problem

• Metrics for efficiency and resilience that work well in various networks, including
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disconnected topologies

• Evidence for optimality of star-like topologies

• Evidence for non-monotonicities in the edge density as a function of cascade risk

• Evidence that the cellular hierarchical network, such as the FTP is suitable for

intermediate ranges of risk, and that the 9/11 network would have been easily

defeated under a more rigorous security environment.

Much further work remains to be done in this area. The multi-objective optimization

problem for networks could be modeled in other interesting ways, such as by exam-

ining the efficient frontier, or by maximizing just efficiency W (G) under a constraint

on resilience: R(G) ≥ r. Another interesting area is optimal design in heterogeneous

rather than simple graphs. The former are important in practice and are potentially more

involved. For example, there could be two or more classes of nodes, with different ef-

fects on efficiency and resilience. One of them could be “immune” to contagions. As

well, the current contagion model could be usefully generalized to other models (mul-

tiplexed contagions [1], the SIS model or threshold contagions [28]). It should also

be worthwhile to explore questions about dynamics, such as, how to grow networks

while maintaining both their efficiency and cascade resilience. More theoretically, the

discussion of designs suggests consideration of Kolmogorov complexity as applied to

networks. It is possible that the number of parameters in a designs constraints the opti-

mality of the network. The work could also be extended to consider novel application

areas such as the improvement of financial credit networks, whose structure may make

them vulnerable to bankruptcies [37, 38].
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APPENDIX

5.A Continuity of Fitness

It was claimed in sec. 5.4.1 that fitness is continuous. Notice that the claim is not about

the continuity of fitness of a single configuration as a function of r but rather that:

Claim: f (r) = maxG∈GF(G,r) is continuous for r ∈ [0,1].

Proof: The argument constructs a bound on the change in f in terms of the change

in r. Consider an optimal configuration C1 of a design for r = r1 and let its fitness

be f1 = F(C1,r1) (there is slight abuse of notation since C is a configuration, which is

usually an ensemble of graphs).

Observation 1: consider the fitness of C1 at r = r2. Because C1 is fixed and the metrics

are bounded (0≤ R≤ 1 and 0≤W ≤ 1), the fitness change is bounded by the change in

r:

| f1−F(C1,r2)| = |r1R(C1)+(1− r1)W (C1)− r2R(C1)− (1− r2)W (C1)|

= |(r1− r2)R(C1)− (r1− r2)W (C1)|

≤ |r1− r2| .

Observation 2: let C2 be the optimal configuration for r = r2 and let f2 = F(C2,r2).

Since C2 is optimal for r = r2 it satisfies: f2 ≥ f (C1,r2), and so − f2 ≤ −F(C1,r2).

It follows that f1− f2 ≤ f1−F(C1,r2). Together with Observation 1 get the bound:

f1− f2 ≤ |r1− r2|.

Observation 3: applying the argument of Observations 1&2 but reversing the roles of C1

and C2 implies that f2− f1 ≤ |r1− r2|.

Observations 2&3 give | f1− f2| ≤ |r1− r2|. Continuity is then proved by recalling
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that f2 is a function of r and taking the limit: limr2→r1 | f1− f (r2)| ≤ limr2→r1 |r1− r2|=

0.

5.B Extent and Contagion Risk

Proposition: Let

f (τ) = max
G∈G

rR(G,τ)+(1− r)W (G)︸                           ︷︷                           ︸
F(G,τ)


be the fitness of the optimal graph G∗ for a fixed network design G, for cascade proba-

bility τ . Then f (τ) is a non-increasing function of τ .

Proof of Proposition: The proof relies on a simple claim that resilience of networks

does not increase when τ increases. Namely:

Claim: ∀G, a simple graph, if τ+ > τ then R(G,τ)≥R(G,τ+), that is, increasing cascade

probability does not increase resilience.

If the claim is proved the remainder is almost trivial, because we need to show that when

the fitness of all the points on the space has been made smaller or kept the same (by

increasing τ), the new maximum value would not be greater than the old. Rigorously,

assume by contradiction that τ+ > τ and fitness increased, namely:

f (τ+) > f (τ) . (5.-3)

Let G∗τ+
,G∗τ by any two optimal networks for τ+ and τ , respectively, namely: G∗τ+

∈

argmaxG∈G [rR(G,τ+)+(1− r)W (G)] and G∗τ ∈ argmaxG∈G [rR(G,τ)+(1− r)W (G)].

By optimality of G∗τ , get that at τ

F(G∗τ ,τ)−F(G∗τ+
,τ)︸                        ︷︷                        ︸

≡∆

≥ 0 . (5.-3)
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Expanding ∆:

∆ = F(G∗τ ,τ)−
[
rR(G∗τ+

,τ)+(1− r)W (G∗τ+
)
]

≤ F(G∗τ ,τ)− rR(G∗τ+
,τ+)− (1− r)W (G∗τ+

) by the Claim.

= f (τ)−F(G∗τ+
,τ+)

< 0 by the assumption (5.B).

This implies that F(G∗τ ,τ)−F(G∗τ+
,τ) < 0 and therefore contradicts that G∗τ is an opti-

mal network for τ (Eq. 5.B).

The argument is more general. One could apply this method to the parameter g of

attenuation, showing that fitness is non-increasing when attenuation is increased.

Proof of Claim: Consider the first step of the cascade, i.e. as it expands from a single

node in condition I. There are no removed nodes, and hence the probability the conta-

gion would expand from the initial is at least as large under τ+ as it is under τ . Next,

consider any state K of the graph containing nodes in S,I, and R conditions (suscepti-

ble, infected and removed, resp.). Consider also any state K ′ which can be produced

in one cascade event from K (note that the time steps of the simulation above may

each contain several such events, but any node can only change its condition once per

time step). The possible differences between K and K ′ are a single node (1) changing

I→ R or a node (2) changing S→ I. Observe that for (1) and (2) the probability of the

event happening is at least as large under τ+ as compared to τ . Since any cascade can be

decomposed into a finite number of cascade steps, the expected extent of the contagion

is at least as large under τ+ as compared to τ . More formally, let Xi,t be the event that the

contagion is in state i at time t, where a “state” contains information on which nodes are

in each of the S, I,R conditions. Consider two network states X j,t+1 and Xk,t+1, reach-

able from Xi,t where Xk,t+1 has not less nodes in condition I. Under the measure induced

by τ+ the probability of transitions to state Xk,t+1 is at least as large under τ , for all such
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states. By induction on t from 1 to t (t is time where the epidemic has no more infected

nodes, i.e. nodes in condition I), the mean extent must be at least as large under τ+.

5.C Simulation Methodology

The resilience metric is most easily computed by simulation where a node is selected at

random to be “infected”, and the simulation is run until all nodes are in states S or R, and

none is in state I. A cascade/contagion that starts at a single node would run for up to n

steps, but usually much fewer since typically τ < 1 and/or the graph is not connected.

To achieve good estimate of the average extent, the procedure was replicated 40 times,

and then continued as long as necessary to achieve an error of under±1node with a 95%

confidence interval.

For each design and configuration, the program generated 1− 10 sample networks

(depending on the variability characteristic of the design) of 100 nodes each, and com-

puted the average objective function value. The coefficient of variation in the fitness of

the sample networks was monitored to ensure that the average is a reliable measure of

performance. Typically variation was < 0.2 except near phase transitions of connectivity

and percolation. In designs consisting of cells of size k, in order to consider a spectrum

of k values some of which might not divide 100, the number of nodes was chosen to be

either the largest multiple of k less than 100 or the smallest multiple larger than 100. If

k was fractional, cell sizes were sampled from a normal distribution with mean k and

standard deviation 0.3, rounded to the nearest integer. In general, normalization in the

definitions of resilience and efficiency ensures that even when the number of nodes is

tripled the effect of network size on fitness is very small for the above designs (around
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±0.05 in numerical experiments).

Optimization was performed using simple grid search without grid refinement. Al-

ternative methods (e.g. Nelder-Mead) were considered but grid search was chosen de-

spite its computational cost because it suffers no convergence problems even in the pres-

ence of noise (present due to variations in topology and contagion extent), and collects

data useful for sensitivity analysis.

An analytic computation of the cascade extent metric was investigated. It is possible

in theory because the contagion is a Markov process with states in the superset of the

set of nodes, 2n. Unfortunately, such a state space is impractically large. When G is a

tree, then an analytic expression exists2, and it might be feasible when the treewidth is

small [39, 29]. However, in many graphs below the tree approximation is not suitable.

A fruitful approximate approach is to represent the contagion approximately as a system

of differential equations which can be integrated numerically [4] . These possibilities

were not pursued since the simulation approach was sufficient and could be applied to

all graphs.

5.D Analytic Results

The information provided by simulations is valuable but limited, as simulations cannot

be run for the entire infinity of parameter values and design configurations. Fortunately,

it is easy to analytically derive the values of the resilience, efficiency (and hence fitness)

functions for certain simple designs: the cycles and the stars designs. Recall that n is

the number of nodes and k is the number of nodes per cell. For k = 1, in both designs

2Specifically, the mean contagion size is 1 + pG′0(1)
1−pG′1(1) , where G0(x) generates the degree distribution

and G1(x) = G′0(x)
G′0(1) generates the probability of arrival to a node [29].
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R = 1 and W = 0. When k ≥ 2, for the cycle design:

R(n,k,τ) = 1− 1
n−1

[
2τ

1− τk−1

1− τ
− (k−1)τk

]

W (n,k,g) =
1

n−1


1

( k
2 )g +2∑

k
2−1
j=1

1
jg k even

2∑

k−1
2

j=1
1
jg k odd

and for the stars design:

R(n,k,τ) = 1− 1− 1
k

n−1
[2+ τ(k−2)]τ

W (n,k,g) =
1− 1

k
n−1

[
2+2−g(k−2)

]
.

These expressions are not readily useful for continuous optimization since k is discrete,

but they can be used to obtain a plot of the fitness function, and identify phase transi-

tions. Thus, they help inform optimization for designs where no analytic expression is

available.

In the stars design, when R and W are weighted equally (r = 1
2 ), fitness takes a rel-

atively simple form: F = 1
2 + 1

2
1− 1

k
n−1

[
2(1− τ)+(2−g− τ2)(k−2)

]
. This implies that

increasing cell size k, for k large, improves fitness iff 2−g− τ2 > 0. Hence the optimal

configuration has one cell (k = n), until a threshold near τ = 2−g/2 (for g = 1, approxi-

mately 0.71). This agrees with the findings in Fig. 5.9. Also, the rate of change in fitness

with respect to τ , dF
dτ

= 1− 1
k

n−1 [−2−2τ(k−2)], is always negative, as expected on more

general grounds (see Appendix, sec. 5.B). It is linear in τ (because it is a tree graph) but

superlinear in k (because of the mutual hazard induced by adding nodes to cells.)
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5.E Configuring the Optimal Design

As τ is varied, the optimal configuration changes. This section shows those changes

in the values of the parameters k (cell size) and p (connectivity). In other words, it

indicates how each of the designs ought to be configured to attain optimal fitness, as a

function of resilience weighting, r, and cascade probability, τ .

The cell size parameter k is non-monotonic for various designs under r < 0.5 (Fig.

5.9). For example, for the connected cliques design, at low contagion risk (τ < 0.1),

k is high (comparable to the size of the network, i.e. k→ n), then it falls to a small

number. At high contagion risk (τ > 0.6) the network is again highly connected again

with k→ n. Thus for τ → 1, the optimal network is the fully-connected graph.

In general, designs involving both the p and k parameters show an intricate interplay

between the two (Fig. 5.10). For example, in the connected stars design under r < 0.5

there are two phase-transitions in connectivity p: as τ increases at τ → τ∗l ≈ 0.1 it

transitions from a connected graph to disconnected cells, and at τ → τ∗u ≈ 0.7 back to

full connectivity. If r > 0.5 the second transition is extinguished. The data requires care

to interpret. For example, in the connected stars design τ ∈ [0.1,0.65], when r > 0.5

the fluctuations in the p are noise because there is a single cell and a single cell leader

(k = n), and so the parameter p has no effect. For sensitivity analysis see Appendix,

section 5.F.

5.F Sensitivity Analysis

It is desirable to determine how much variability exists within the optimal values. One

possible approach is to consider all configurations whose fitness ≥ 0.95 of the fitness
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Figure 5.9: Cell size k in the optimal configuration of each design.
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Figure 5.10: Connectivity p in the optimal configuration of each design.

of the optimal solution, and describe the variability in this space. Since in practice the

space is infinite, sampling is necessary. The plots of standard deviation within various

properties of those configurations are shown in Figs. 5.11,5.12,5.13,5.15,5.14.
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Figure 5.11: Standard deviation in resilience, within the top 5% of solutions.
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Figure 5.12: Standard deviation in efficiency, within the top 5% of solutions.
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Figure 5.13: Standard deviation in average degree, within the top 5% of solutions.
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Figure 5.14: Standard deviation in cell size k of the top 5% of solutions.
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Figure 5.15: Standard deviation in connectivity p of the top 5% of solutions.
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Overall, as one would expect, the properties are more variable near the transition

point r = 0.5 as compared to r values away from r = 0.5. Moreover, variability is high

within each design whenever the design undergoes a phase transition, since multiple dif-

ferent phases have nearly equal fitness. Designs with two parameters are more variable

than those with a single parameter because the latter can sometimes reproduce the same

graphs with many different parameter settings - the parameters have “non-orthogonal”

effects.

135



REFERENCES

[1] D. Centola and M. Macy, “Complex contagions and the weakness of long ties,”
American J. Sociology, vol. 113, pp. 702–734, Nov 2007.

[2] P. Crepey, F. P. Alvarez, and M. Barthelemy, “Epidemic variability in complex
networks,” Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
vol. 73, no. 4, p. 046131, 2006.

[3] W. Huang and C. Li, “Epidemic spreading in scale-free networks with community
structure,” J Stat Mech, vol. P01014, 2007.

[4] M. J. Keeling, “The effects of local spatial structure on epidemiological invasions,”
Proc R Soc Lond B, vol. 266, pp. 859–867, Jan 1999.

[5] R. Pastor-Sarorras and A. Vespignani, “Epidemic spreading in scale-free net-
works,” Phys Rev Lett, vol. 86, pp. 3200–3203, Apr 2001.

[6] F. O. Miksche, Secret Forces. London, UK: Faber and Faber, 1st ed., 1950.

[7] G. W. Klau and R. Weiskircher, “Robustness and resilience,” in Network Analysis,
Lecture Notes in Computer Science 3418, pp. 417–437, Springer-Verlag, 2005.

[8] W. E. Baker and R. R. Faulkner, “The social organization of conspiracy: Illegal
networks in the heavy electrical equipment industry,” American Sociological Re-
view, vol. 58, no. 6, pp. 837–860, 1993.

[9] C. Morselli, K. Petit, and C. Giguere, “The Efficiency/Security Trade-off in Crim-
inal Networks,” Social Networks, vol. 29, no. 1, pp. 143–153, 2007.

[10] G. Gunther and B. L. Hartnell, “On minimizing the effects of betrayals in resis-
tance movements,” in Proceedings of the Eighth Manitoba conference on Numeri-
cal Mathematics and Computing, pp. 285–306, 1978.

[11] R. H. Lindelauf, P. E. Borm, and H. Hamers, “On Heterogeneous Covert Net-
works,” SSRN eLibrary, 2008.

[12] J. Zawodny, “Internal organization problems and the sources of tensions of ter-
rorist movements as catalysts of violence,” Terrorism: An International Journal
(continued as Studies in Conflict and Terrorism), vol. 1, no. 3/4, pp. 277–285,
1978.

136



[13] G. Woo, Mathematical Methods in Counterterrorism, ch. Intelligence Constraints
on Terrorist Network Plots. Springer-Verlag, 2009. to appear.

[14] R. Albert, H. Jeong, and A.-L. Barabasi, “Error and attack tolerance of complex
networks,” Nature (London), vol. 406, pp. 378–381, 2001.

[15] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Network
robustness and fragility: Percolation on random graphs,” Phys. Rev. Lett., vol. 85,
pp. 5468–5471, Dec 2000.

[16] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, “Resilience of the internet to
random breakdowns,” Phys. Rev. Lett., vol. 85, pp. 4626–4628, Nov 2000.

[17] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka,
and W. Willinger, “The ”robust yet fragile” nature of the Internet,” Proceedings of
the National Academy of Sciences, vol. 102, no. 41, pp. 14497–14502, 2005.

[18] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of complex
networks,” Phys. Rev. E, vol. 65, p. 056109, May 2002.

[19] P. Holme, “Efficient local strategies for vaccination and network attack,” Europhys.
Lett., vol. 68, pp. 908–914, Dec 2004.

[20] P. Crucitti, V. Latora, and M. Marchiori, “Model for cascading failures in complex
networks,” Phys. Rev. E, vol. 69, p. 045104, Apr 2004.

[21] Y.-C. Lai, A. Motter, and T. Nishikawa, “Attacks and cascades in complex net-
works,” in Complex Networks: Lecture Notes in Physics 650, pp. 299–310,
Springer-Verlag, 2004.

[22] A. E. Motter, “Cascade control and defense in complex networks,” Phys. Rev. Lett.,
vol. 93, p. 098701, Aug 2004.

[23] B. L. Hartnell, “The optimum defense against random subversions in a network,”
in Proceedings of the Tenth Southeast conference on Combinatorics Graph Theory
and Computing, pp. 494–499, 1979.

[24] A. S. Finbow and B. L. Hartnell, “On designing a network to defend against ran-
dom attacks of radius two,” Networks, vol. 19, no. 7, pp. 771–792, 1989.

[25] M. Baccara and H. Bar-Isaac, “How to organize crime,” Review of Economic Stud-
ies, vol. 75, pp. 1039–1067, October 2008.

137



[26] R. H. Lindelauf, P. E. Borm, and H. Hamers, “The Influence of Secrecy on the
Communication Structure of Covert Networks,” Social Networks, 2009.

[27] B. Pourbohloul, L. Meyers, D. Skowronski, M. Krajden, D. Patrick, and R. Brun-
ham, “Modeling control strategies of respiratory pathogens,” Emerg. Infect. Dis.,
vol. 11, no. 8, pp. 1246–56, 2005.

[28] M. E. J. Newman, “The structure and function of complex networks,” SIAM Re-
view, vol. 45, no. 2, pp. 167–256, 2003.

[29] M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev. E, vol. 66,
p. 016128, Jul 2002.

[30] D. Newth and J. Ash, “Evolving cascading failure resilience in complex networks,”
Complexity International, vol. 11, pp. 125–136, Jan 2005.

[31] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publication of the
Mathematical Institute of the Hungarian Acadamy of Science, vol. 5, pp. 17–67,
1960.

[32] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,”
Nature (London), vol. 393, pp. 440–442, Jun 1998.

[33] R. Albert and A.-L. Barabasi, “Emergence of scaling in random networks,” Sci-
ence, vol. 286, pp. 509–512, Oct 1999.

[34] J. Arquilla and D. Ronfeld, Networks and Netwars: The Future of Terror, Crime,
and Militancy. Santa Monica, CA: RAND Corporation, 2001.

[35] K. M. Carley, “Destabilization of covert networks,” Comput Math Organiz Theor,
vol. 12, pp. 51–66, 2006.

[36] V. E. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, no. 3,
pp. 43–52, 2002.

[37] S. Battiston, D. D. Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz, “Credit
chains and bankruptcy propagation in production networks,” Journal of Economic
Dynamics and Control, vol. 31, pp. 2061–2084, 2007.

[38] G. Iori, G. D. Masi, O. V. Precup, G. Gabbi, and G. Caldarelli, “A network anal-
ysis of the italian overnight money market,” Journal of Economic Dynamics and
Control, vol. 32, pp. 259–278, 2008.

138



[39] T. Colcombet, “On families of graphs having a decidable first order theory with
reachability,” in Automata, Languages and Programming: 29th International Col-
loquium, ICALP (J. Diaz et al., eds.), 2002.

139


